| A. | -$\frac{2}{3}$ | B. | $\frac{2}{5}$ | C. | $\frac{2}{3}$ | D. | $\frac{\sqrt{5}}{3}$ |
分析 连结AC,BD,交于点O,连结OP,以O为原点,OA为x轴,OB为y轴,OP为z轴,建立空间直角坐标系,利用向量法能求出异面直线AE与CF所成角的余弦值.
解答 解:
连结AC,BD,交于点O,连结OP,
以O为原点,OA为x轴,OB为y轴,OP为z轴,建立空间直角坐标系,
∵正四棱锥P-ABCD中,所有棱长均等于2$\sqrt{2}$,E,F分别为PD,PB的中点,
∴OA=OB=$\frac{1}{2}$$\sqrt{(2\sqrt{2})^{2}+(2\sqrt{2})^{2}}$=2,OP=$\sqrt{(2\sqrt{2})^{2}-{2}^{2}}$=2,
∴A(2,0,0),D(0,-2,0),P(0,0,2),B(0,2,0),
E(0,-1,1),F(0,1,1),C(-2,0,0),
$\overrightarrow{AE}$=(-2,-1,1),$\overrightarrow{CF}$=(2,1,1),
设异面直线AE与CF所成角为θ,
则cosθ=$\frac{|\overrightarrow{AE}•\overrightarrow{CF}|}{|\overrightarrow{AE}|•|\overrightarrow{CF}|}$=$\frac{4}{\sqrt{6}•\sqrt{6}}$=$\frac{2}{3}$.
∴异面直线AE与CF所成角的余弦值为$\frac{2}{3}$.
故选:C.
点评 本题考查异面直线所成角的余弦值的求法,是基础题,解题时要认真审题,注意向量法的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -log20122011 | B. | -1 | C. | -1+log20122011 | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 12 | C. | 6 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,1] | B. | [0,+∞) | C. | (-∞,0]∪[1,+∞) | D. | [0,1] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com