精英家教网 > 高中数学 > 题目详情
12.小明、小红等4位同学各自申请甲乙两所大学的自主招生考试资格,则每所大学恰有两位同学申请,且小明、小红没有申请同一所大学的所有可能性有     种.(  )
A.4B.12C.6D.3

分析 由于小明、小红没有申请同一所大学,则组合为(AC,BD)与(AD,BC)两种形式,再分配到2个学校即可.

解答 解:设小明、小红等4位同学分别为A,B,C,D,小明、小红没有申请同一所大学,则组合为(AC,BD)与(AD,BC)
若AC选甲学校,则BD选乙学校,若AC选乙学校,则BD选甲学校,
若AD选甲学校,则BC选乙学校,若AD选乙学校,则BC选甲学校,
故共有4种方法,
故选:A.

点评 本题考查了简单的排列组合的问题,关键把4人分组,分组再分配,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>0,b>0)$的离心率为$\frac{{\sqrt{3}}}{2}$,且焦距为4$\sqrt{3}$
(I)求椭圆C的方程;
(Ⅱ)设直线l:y=kx+m与椭圆C交于A、B两点,且△AOB的面积为4,其中O为坐标原点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知方程$sin({x+3})=\frac{m}{2}在[{0,π}]上有两个解,则m的取值范围为$(-2,2sin3].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=$\left\{\begin{array}{l}{{e}^{x},x>0}\\{-{x}^{2}-3x-1,x≤0}\end{array}\right.$ 若函数y=f(x)-kx只有2个零点,则实数k的取值范围是(  )
A.(-∞,1)B.(-∞,e)C.(-1,e)D.(-1,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在正四棱锥P-ABCD中,所有棱长均等于2$\sqrt{2}$,E,F分别为PD,PB的中点,求异面直线AE与CF所成角的余弦值为(  )
A.-$\frac{2}{3}$B.$\frac{2}{5}$C.$\frac{2}{3}$D.$\frac{\sqrt{5}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在极坐标系中,已知圆C的极坐标方程为ρ=2$\sqrt{2}$sin(θ+$\frac{π}{4}$),直线的极坐标方程为ρcosθ-ρsinθ+1=0,
(Ⅰ)求圆C的面积;
(Ⅱ)直线与圆C相交于A,B两点,求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知$\frac{1}{C_5^m}$-$\frac{1}{C_6^m}$=$\frac{7}{10C_7^m}$,则C21m=210.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=|x-1|.
(Ⅰ)解不等式f(x-1)+f(x+3)≥6;
(Ⅱ)若|a|<1,|b|<1,且b≠0,求证:f(ab)>|b|f($\frac{a}{b}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知数列{an}满足a1=-1,an+1=$\frac{(3n+3){a}_{n}+(4n+6)}{n}$,数列{bn}满足bn=$\frac{{a}_{n}+2}{n}$.
(Ⅰ)求证:数列{bn}为等比数列并求{bn}的通项公式;
(Ⅱ)数列{cn}的前n项的和为Sn,且cn=$\frac{{3}^{n-1}}{{a}_{n}+2}$.求证:n≥2时,Sn2≥2($\frac{{S}_{2}}{2}$+$\frac{{S}_{3}}{3}$+…+$\frac{{S}_{n}}{n}$).

查看答案和解析>>

同步练习册答案