分析 (Ⅰ)圆C的极坐标方程为ρ=2$\sqrt{2}$sin(θ+$\frac{π}{4}$),展开可得:ρ2=2$\sqrt{2}$ρ(sinθ+cosθ),利用互化公式可得直角坐标方程,配方可得圆的标准坐标方程,可得圆的半径,即可多得出面积.
(Ⅱ)直线的极坐标方程为ρcosθ-ρsinθ+1=0,利用互化公式可得直线的直角坐标方程,利用点到直线的距离公式可得圆心(1,1)到直线的距离d,再利用弦长公式即可得出.
解答 解:(Ⅰ)圆C的极坐标方程为ρ=2$\sqrt{2}$sin(θ+$\frac{π}{4}$),展开可得:ρ2=2$\sqrt{2}$ρ(sinθ+cosθ),可得直角坐标方程:x2+y2=2$\sqrt{2}$(x+y),
配方可得:圆的直角坐标方程为(x-1)2+(y-1)2=2,
圆的半径为$\sqrt{2}$,∴面积为2π.
(Ⅱ)直线的极坐标方程为ρcosθ-ρsinθ+1=0,可得:直线的直角坐标方程为x-y+1=0,
圆心(1,1)到直线的距离为$\frac{|1-1+1|}{{\sqrt{1+1}}}=\frac{{\sqrt{2}}}{2}$,
∴$|AB|=2\sqrt{{{(\sqrt{2})}^2}-{{(\frac{{\sqrt{2}}}{2})}^2}}=\sqrt{6}$.
点评 本题考查了极坐标方程化为直角坐标方程、圆的面积、点到直线的距离公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | (-∞,0) | B. | (-∞,-$\frac{3\root{3}{2}}{2}$) | C. | (0,+∞) | D. | (-∞,-1) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 12 | C. | 6 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{C_{12}^1•C_6^1•C_{20}^1}}{{C_{22}^3-C_{10}^3}}$ | |
| B. | $\frac{{C_{12}^1•C_6^1•C_4^1+C_{12}^1•C_6^2}}{{C_{22}^3-C_{10}^3}}$ | |
| C. | $\frac{{C_{12}^1•(C_6^1•C_4^1+C_6^2)+C_{12}^2•C_6^1}}{{C_{22}^3-C_{10}^3}}$ | |
| D. | $\frac{{C_{22}^3-C_{10}^3-C_{16}^3}}{{C_{22}^3-C_{10}^3}}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -1 | B. | 2 | C. | 1 | D. | -2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 运动时间 性别 | 运动达人 | 非运动达人 | 合计 |
| 男生 | 36 | ||
| 女生 | 26 | ||
| 合计 | 100 |
| P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
| k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com