精英家教网 > 高中数学 > 题目详情
7.已知函数f(x)=x3+ax2+1的对称中心的横坐标为x0(x0>0)且f(x)有三个零点,则实数a的取值范围是(  )
A.(-∞,0)B.(-∞,-$\frac{3\root{3}{2}}{2}$)C.(0,+∞)D.(-∞,-1)

分析 判断f(x)的单调性,求出f(x)的极值,令极小值小于零即可求出a的范围.

解答 解:f′(x)=3x2+2ax,令f′(x)=0得x=0或x=-$\frac{2a}{3}$,
∴x0=-$\frac{a}{3}$>0,∴a<0.
∴当x<0或x>-$\frac{2a}{3}$时,f′(x)>0,当0<x<-$\frac{2a}{3}$时,f′(x)<0,
∴f(x)在(-∞,0)上单调递增,在(0,-$\frac{2a}{3}$)上单调递减,在(-$\frac{2a}{3}$,+∞)上单调递增,
∴f(x)的极大值为f(0)=1,极小值为f(-$\frac{2a}{3}$)=$\frac{4{a}^{3}}{27}+1$.
∵f(x)有三个零点,
∴$\frac{4{a}^{3}}{27}+1$<0.解得a<-$\frac{3\root{3}{2}}{2}$.
故选B.

点评 本题考查了函数的单调性与极值,函数零点的个数判断,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知△ABC中,a=$\sqrt{13}$,∠A=60°,S=3$\sqrt{3}$,求b、c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知抛物线C:y2=4x的焦点为F,P为C的准线上一点,Q (在第一象限)是直线PF与C的一个交点,若$\overrightarrow{PQ}$=2$\overrightarrow{QF}$,则QF的长为$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率为$\frac{{\sqrt{3}}}{2}$,且椭圆上一点到右焦点的最大距离与最小距离之差为$4\sqrt{3}$.
(Ⅰ)求椭圆的方程;
(Ⅱ)已知点A(4,-2),过原点且斜率为k(k>0)的直线l与椭圆交于两点P(x1,y1)、Q(x2,y2),求△APQ面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>0,b>0)$的离心率为$\frac{{\sqrt{3}}}{2}$,且焦距为4$\sqrt{3}$
(I)求椭圆C的方程;
(Ⅱ)设直线l:y=kx+m与椭圆C交于A、B两点,且△AOB的面积为4,其中O为坐标原点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知某几何体的三视图如图所示,根据图中标出的尺寸,可得这个几何体的表面积是(  )
A.4B.$\frac{4}{3}$C.7+$\sqrt{5}$D.5+2$\sqrt{2}$+$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.请阅读下列不等式的证法:已知a1,a2∈R,a12+a22=1,求证:|a1+a2|≤$\sqrt{2}$.
证明:构造函数f(x)=(x-a12+(x-a22
则f(x)=2x2-2(a1+a2)x+a12+a22=2x2-2(a1+a2)x+1.
因为对一切x∈R,恒有f(x)≥0,所以△=4(a1+a22-8≤0,从而得|a1+a2|≤$\sqrt{2}$.
请回答下面的问题:
若a1,a2,…,an∈R,a12+a22+…+an2=1,请写出上述结论的推广形式,并进行证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=4$\sqrt{3}$sinxcosx-4sin2x+1.
(1)求函数f(x)的最大值及此时x的值;
(2)在△ABC中,a,b,c分别为内角A,B,C的对边,且对f(x)定义域中的任意的x都有f(x)≤f(A),若a=2,求$\overrightarrow{AB}$$•\overrightarrow{AC}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在极坐标系中,已知圆C的极坐标方程为ρ=2$\sqrt{2}$sin(θ+$\frac{π}{4}$),直线的极坐标方程为ρcosθ-ρsinθ+1=0,
(Ⅰ)求圆C的面积;
(Ⅱ)直线与圆C相交于A,B两点,求|AB|.

查看答案和解析>>

同步练习册答案