精英家教网 > 高中数学 > 题目详情
16.已知抛物线C:y2=4x的焦点为F,P为C的准线上一点,Q (在第一象限)是直线PF与C的一个交点,若$\overrightarrow{PQ}$=2$\overrightarrow{QF}$,则QF的长为$\frac{4}{3}$.

分析 求得直线PF的方程,与y2=4x联立可得x═$\frac{1}{3}$,利用|QF|=d可求.

解答 解:设Q到l的距离为d,则|QF|=d,
∵P为C的准线上一点,Q (在第一象限)是直线PF与C的一个交点,$\overrightarrow{PQ}$=2$\overrightarrow{QF}$,
∴|PQ|=2d,
∴直线PF的斜率为-$\sqrt{3}$,
∵F(1,0),
∴直线PF的方程为y=-$\sqrt{3}$(x-1),
与y2=4x联立可得x=$\frac{1}{3}$,
∴|QF|=d=$\frac{4}{3}$.
故答案为:$\frac{4}{3}$.

点评 本题考查抛物线的简单性质,考查直线与抛物线的位置关系,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.设l,m,n表示不同的直线,α,β,γ表示不同的平面,给出下列四个命题:
①若m∥l,且m⊥α,则l⊥α
②若m∥l,且m∥α,则l∥α
③若α⊥β,α∩β=l,m⊥l,则m⊥β
④α∩β=m,β∩γ=l,γ∩α=n,且n∥β,则l∥m.
其中正确命题的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设A、B是非空集合,定义A⊙B={x|x∈A,且x∉B},已知A={x|x2-x-2≤0},B={x|y=$\frac{1}{\sqrt{1-x}}$},则A⊙B=(  )
A.B.[-1,2]C.[1,2]D.(1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知集合A={x∈R|-1<x<1},B={x∈R|0≤x≤3},则A∪B=(  )
A.{x|0≤x<1}B.{x|1<x≤3}C.{x|-1<x≤3}D.{x|x<-1,或x≥0}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,已知矩形ABCD所在平面垂直于直角梯形ABPE所在平面于直线AB,平面ABCD∩平面ABPE=AB,且AB=BP=2,AD=AE=1,AE⊥AB,且AE∥BP.
(1)设点M为棱PD中点,在面ABCD内是否存在点N,使得MN⊥平面ABCD?若存在,
请证明;若不存在,请说明理由;
(2)求二面角D-PE-A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在直角坐标系xOy中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知
曲线C1:$\sqrt{2}$ρsin(θ-$\frac{π}{4}$)=3,曲线C2:$\left\{\begin{array}{l}{x=\sqrt{t}}\\{y=t+1}\end{array}\right.$,(t为参数).
(I)写出C1的直角坐标方程和C2的普通方程;
(Ⅱ)设C1和C2的交点为P,求点P在直角坐标系中的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知两定点$M(-\sqrt{6},0),N(\sqrt{6},0)$,动点P满足$\overrightarrow{PM}•\overrightarrow{PN}=0$,由点P向x轴作垂线PQ,垂足为Q,点R满足$\overrightarrow{PR}=(\sqrt{3}-1)\overrightarrow{RQ}$,点R的轨迹为C.
(1)求曲线C的方程;
(2)直线l与x轴交于点E,与曲线C交于A、B两点,是否存在点E,使得$\frac{1}{{EA}^{2}}$+$\frac{1}{{EB}^{2}}$为定值?若存在,请指出点E的坐标,并求出该定值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=x3+ax2+1的对称中心的横坐标为x0(x0>0)且f(x)有三个零点,则实数a的取值范围是(  )
A.(-∞,0)B.(-∞,-$\frac{3\root{3}{2}}{2}$)C.(0,+∞)D.(-∞,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.给出下列命题:
①函数y=tan x的图象关于点($\frac{kπ}{2}$,0)(k∈Z)对称;
②函数f(x)=sin|x|是最小正周期为π的周期函数;
③函数y=cos2x+sin x最小值为-1;
④设θ为第二象限的角,则tan $\frac{θ}{2}$>cos$\frac{θ}{2}$,且sin$\frac{θ}{2}$>cos$\frac{θ}{2}$.
其中正确的命题序号是①③.

查看答案和解析>>

同步练习册答案