精英家教网 > 高中数学 > 题目详情
11.如图,已知矩形ABCD所在平面垂直于直角梯形ABPE所在平面于直线AB,平面ABCD∩平面ABPE=AB,且AB=BP=2,AD=AE=1,AE⊥AB,且AE∥BP.
(1)设点M为棱PD中点,在面ABCD内是否存在点N,使得MN⊥平面ABCD?若存在,
请证明;若不存在,请说明理由;
(2)求二面角D-PE-A的余弦值.

分析 (1)连接AC,BD交于点N,连接MN,由已知可证PB⊥平面ABCD,再由三角形中位线可得MN∥PB,进一步得到MN⊥平面ABCD;
(2)以A为原点,AE,AB,AD所在直线分别为x轴,y轴,z轴建立坐标系,可得平面PEA的法向量,再设平面DPE的法向量,利用向量数量积为0列式求出法向量,求得两个法向量的夹角的余弦值,可得二面角D-PE-A的余弦值.

解答 解:(1)连接AC,BD交于点N,连接MN,则MN⊥平面ABCD.
证明:∵M为PD中点,N为BD中点,
∴MN为△PDB的中位线,则MN∥PB.
又平面ABCD⊥平面ABPE,
平面ABCD∩平面ABPE=AB,BC?平面ABCD,BC⊥AB,
∴BC⊥平面ABPE,则BC⊥PB,
又PB⊥AB,AB∩BC=B,∴PB⊥平面ABCD,
∴MN⊥平面ABCD;
(2)以A为原点,AE,AB,AD所在直线分别为x轴,y轴,z轴建立坐标系,
∵AD⊥平面PEA,∴平面PEA的法向量$\overrightarrow{{n}_{1}}=(0,0,1)$,
又D(0,0,1),E(1,0,0),P(2,2,0),
∴$\overrightarrow{DE}=(1,0,-1)$,$\overrightarrow{DP}=(2,2,-1)$,
设平面DPE的法向量为$\overrightarrow{{n}_{2}}=(x,y,z)$,
则$\left\{\begin{array}{l}{x-z=0}\\{2x+2y-z=0}\end{array}\right.$,取z=1,得x=1,y=$-\frac{1}{2}$,
∴$\overrightarrow{{n}_{2}}=(1,-\frac{1}{2},1)$,则cos$<\overrightarrow{{n}_{1}},\overrightarrow{{n}_{2}}>$=$\frac{\overrightarrow{{n}_{1}}•\overrightarrow{{n}_{2}}}{|\overrightarrow{{n}_{1}}||\overrightarrow{{n}_{2}}|}=\frac{1}{1×\frac{3}{2}}=\frac{2}{3}$,
又D-PE-A为锐二面角,
∴二面角D-PE-A的余弦值为$\frac{2}{3}$.

点评 本题考查二面角的平面角及其求法,训练了利用空间向量求二面角的大小,考查计算能力,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知等比数列{an}满足:a2+a3=3,a3+a4=6,那么$\sqrt{{a_4}•{a_{12}}}$=(  )
A.128B.81C.64D.49

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知三点A(2,3),B(-1,-1),C(6,k),其中k为常数.若|$\overrightarrow{AB}$|=|$\overrightarrow{AC}$|,则$\overrightarrow{AB}$与$\overrightarrow{AC}$的夹角的余弦值为0或-$\frac{24}{25}$,.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.某学生家长为缴纳该学生上大学时的教育费,于2003年8月20号从银行贷款a元,为还清这笔贷款,该家长从2004年起每年的8月20号便去银行偿还确定的金额,计划恰好在贷款的m年后还清,若银行按年利息为p的复利计息(复利:即将一年后的贷款利息也纳入本金计算新的利息),则该学生家长每年的偿还金额是(  )
A.$\frac{a}{m}$B.$\frac{{ap{{(1+p)}^{m+1}}}}{{{{(1+p)}^{m+1}}-1}}$
C.$\frac{{ap{{(1+p)}^{m+1}}}}{{{p^m}-1}}$D.$\frac{{ap{{(1+p)}^m}}}{{{{(1+p)}^m}-1}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在△ABC中,若b=1,c=$\sqrt{3}$,A=$\frac{π}{6}$,则cos5B=(  )
A.-$\frac{\sqrt{3}}{2}$B.$\frac{1}{2}$C.$\frac{1}{2}$或-1D.-$\frac{\sqrt{3}}{2}$或0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知抛物线C:y2=4x的焦点为F,P为C的准线上一点,Q (在第一象限)是直线PF与C的一个交点,若$\overrightarrow{PQ}$=2$\overrightarrow{QF}$,则QF的长为$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知f(x)=sin(2x+φ),若$f(\frac{π}{3})=0$,则函数f(x)图象的一条对称轴直线是(  )
A.$x=\frac{π}{3}$B.$x=\frac{2π}{3}$C.$x=\frac{5π}{12}$D.$x=\frac{7π}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>0,b>0)$的离心率为$\frac{{\sqrt{3}}}{2}$,且焦距为4$\sqrt{3}$
(I)求椭圆C的方程;
(Ⅱ)设直线l:y=kx+m与椭圆C交于A、B两点,且△AOB的面积为4,其中O为坐标原点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知方程$sin({x+3})=\frac{m}{2}在[{0,π}]上有两个解,则m的取值范围为$(-2,2sin3].

查看答案和解析>>

同步练习册答案