精英家教网 > 高中数学 > 题目详情
2.已知三点A(2,3),B(-1,-1),C(6,k),其中k为常数.若|$\overrightarrow{AB}$|=|$\overrightarrow{AC}$|,则$\overrightarrow{AB}$与$\overrightarrow{AC}$的夹角的余弦值为0或-$\frac{24}{25}$,.

分析 根据向量长度相等建立方程关系求出k的值,结合向量夹角公式进行求解即可.

解答 解:∵$\overrightarrow{AB}$=(-3,-4),$\overrightarrow{AC}$=(4,k-3),
则|$\overrightarrow{AB}$|=5,|$\overrightarrow{AC}$|=$\sqrt{16+(k-3)^{2}}$,
由|$\overrightarrow{AB}$|=|$\overrightarrow{AC}$|得$\sqrt{16+(k-3)^{2}}$=5,
得(k-3)2=9,则k-3=3或k-3=-3,
即k=6或k=0,
若k=6,则C(6,6),$\overrightarrow{AC}$=(4,3),
则cos<$\overrightarrow{AB}$,$\overrightarrow{AC}$>=$\frac{\overrightarrow{AB}•\overrightarrow{AC}}{|\overrightarrow{AB}||\overrightarrow{AC}|}$=$\frac{-3×4-4×3}{5×5}$=-$\frac{24}{25}$,
若k=0,则C(6,-1),$\overrightarrow{AC}$=(4,-3),
则cos<$\overrightarrow{AB}$,$\overrightarrow{AC}$>=$\frac{\overrightarrow{AB}•\overrightarrow{AC}}{|\overrightarrow{AB}||\overrightarrow{AC}|}$=$\frac{-3×4-4×(-3)}{5×5}$=0,
故答案为:0或-$\frac{24}{25}$,

点评 本题主要考查向量数量积的应用,根据向量长度公式以及夹角公式是解决本题的关键.注意要对k进行分类讨论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知椭圆C的中心在原点,焦点在x轴上,离心率为$\frac{1}{2}$,它的一个顶点恰好是抛物线x2=8$\sqrt{3}$y的焦点.
(I)求椭圆C标准方程;
(Ⅱ)直线x=2,与椭圆交于P,Q两点,A,B是椭圆上位于直线x=2两侧的动点.
①若直线AB的斜率为$\frac{1}{2}$,求四边形APBQ面积的最大值;
②当动点A,B满足∠APQ=∠BPQ时,试问直线AB的斜率是否为定值,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知三条不重合的直线l,m,n与平面α,下面结论正确的是(  )
A.l∥α,m∥α,则l∥mB.l⊥α,m⊥α,则l∥mC.l⊥n,m⊥n,则l∥mD.l?α,m∥α,则l∥m

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.如图四边形ABCD是正方形,延长CD至E,使得DE=CD.若动点P从点A出发,沿正方形的边按逆时针方向运动一周回到A点,其中$\overrightarrow{AP}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AE}$,下列五个命题中正确的是①②
①点P与点B重合时,λ+μ=1;
②当点P为BC的中点时,λ+μ=2;
③λ+μ的最大值为4; 
④λ+μ的最小值为-1;
⑤满足λ+μ=1的点P有且只有一个.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知定义在R上的函数f(x)满足f(-x)=f(x),且当x<0,f(x)=3x+1,若a=2${\;}^{\frac{4}{3}}$,b=4${\;}^{\frac{2}{5}}$,c=25${\;}^{\frac{1}{3}}$,则有(  )
A.f(a)<f(b)<f(c)B.f(b)<f(c)<f(a)C.f(b)<f(a)<f(c)D.f(c)<f(a)<f(b)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设A、B是非空集合,定义A⊙B={x|x∈A,且x∉B},已知A={x|x2-x-2≤0},B={x|y=$\frac{1}{\sqrt{1-x}}$},则A⊙B=(  )
A.B.[-1,2]C.[1,2]D.(1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.若实数x、y、m满足|x-m|>|y-m|,则称x比y远离m.
(1)若x2-1比1远离0,求x的取值范围;
(2)已知0<a1<a2<a3,求使得2比2-aix(i=1,2,3)远离1都成立的x取值范围;
(3)设0<x<1,且a≠1,则loga(1-x)比loga(1+x)那个远离零?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,已知矩形ABCD所在平面垂直于直角梯形ABPE所在平面于直线AB,平面ABCD∩平面ABPE=AB,且AB=BP=2,AD=AE=1,AE⊥AB,且AE∥BP.
(1)设点M为棱PD中点,在面ABCD内是否存在点N,使得MN⊥平面ABCD?若存在,
请证明;若不存在,请说明理由;
(2)求二面角D-PE-A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若x,y满足约束条件$\left\{{\begin{array}{l}{x-1≥0}\\{x-y≤0}\\{x+y-4≤0}\end{array}}\right.$,则$\frac{y}{x}$的最大值为(  )
A.-2B.-3C.2D.3

查看答案和解析>>

同步练习册答案