·ÖÎö ½¨Á¢ÈçͼËùʾµÄÖ±½Ç×ø±êϵ£¬ÉèÕý·½Ðεı߳¤Îª1£¬¿ÉÒԵõ½$\overrightarrow{AP}$=¦Ë$\overrightarrow{AB}$+¦Ì$\overrightarrow{AE}$µÄ×ø±ê±íʾ£¬ÔÙ¸ù¾ÝÏà¶ÔÓ¦µÄÌõ¼þ¼ÓÒÔÅжϼ´¿É£®
½â´ð ½â£ºÓÉÌâÒ⣬ÉèÕý·½Ðεı߳¤Îª1£¬½¨Á¢×ø±êϵÈçͼ
£¬
ÔòB£¨1£¬0£©£¬E£¨-1£¬1£©£¬
¡à$\overrightarrow{AB}$=£¨1£¬0£©£¬$\overrightarrow{AE}$=£¨-1£¬1£©£¬
¡ß$\overrightarrow{AP}$=¦Ë$\overrightarrow{AB}$+¦Ì$\overrightarrow{AE}$=£¨¦Ë-¦Ì£¬¦Ì£©£¬
¡àµãPÓëµãBÖØºÏʱ£¬$\overrightarrow{AP}$=$\overrightarrow{AB}$£¬
´Ëʱ¦Ë=1£¬¦Ì=0£¬¦Ë+¦Ì=1£¬¢ÙÕýÈ·£»
¡àPÊÇBCµÄÖеãʱ£¬$\overrightarrow{AP}$=£¨1£¬$\frac{1}{2}$£©=$\frac{3}{2}$$\overrightarrow{AB}$+$\frac{1}{2}$$\overrightarrow{AE}$£¬
´Ëʱ¦Ë=$\frac{3}{2}$£¬¦Ì=$\frac{1}{2}$£¬¦Ë+¦Ì=2£¬¢ÚÕýÈ·£»
µ±P¡ÊABʱ£¬ÓÐ0¡Ü¦Ë-¦Ì¡Ü1£¬¦Ì=0£¬0¡Ü¦Ë¡Ü1£¬0¡Ü¦Ë+¦Ì¡Ü1£¬
µ±P¡ÊBCʱ£¬ÓЦË-¦Ì=1£¬0¡Ü¦Ì¡Ü1£¬¡à¦Ë=¦Ì+1£¬¡à1¡Ü¦Ë¡Ü2£¬¡à1¡Ü¦Ë+¦Ì¡Ü3£¬
µ±P¡ÊCDʱ£¬ÓÐ0¡Ü¦Ë-¦Ì¡Ü1£¬¦Ì=1£¬¡à¦Ì¡Ü¦Ë¡Ü¦Ì+1£¬¼´1¡Ü¦Ë¡Ü2£¬¡à2¡Ü¦Ë+¦Ì¡Ü3£¬
µ±P¡ÊADʱ£¬ÓЦË-¦Ì=0£¬0¡Ü¦Ì¡Ü1£¬¡à0¡Ü¦Ë¡Ü1£¬¡à0¡Ü¦Ë+¦Ì¡Ü2£¬
×ÛÉÏ£¬0¡Ü¦Ë+¦Ì¡Ü3£¬¢Û¦Ë+¦ÌµÄ×î´óֵΪ4£¬´íÎó£»
¢Ü¦Ë+¦ÌµÄ×îСֵΪ-1£¬´íÎó£»
µ±µãPΪADÖеãʱ£¬$\overrightarrow{AP}$=£¨0£¬$\frac{1}{2}$£©=$\frac{1}{2}$$\overrightarrow{AB}$+$\frac{1}{2}$$\overrightarrow{AE}$£¬
´Ëʱ¦Ë=¦Ì=$\frac{1}{2}$£¬¦Ë+¦Ì=1£¬½áºÏ¢ÙÖª£¬Âú×ã¦Ë+¦Ì=1µÄµãP²»Î¨Ò»£¬¢Ý´íÎó£®
×ÛÉÏ£¬ÕýÈ·µÄÃüÌâÊÇ¢Ù¢Ú£®
¹Ê´ð°¸£º¢Ù¢Ú£®
µãÆÀ ±¾Ì⿼²éÏòÁ¿¼Ó¼õµÄ¼¸ºÎÒâÒ壬ɿ¼°·ÖÀàÌÖÂÛÒÔ¼°·´ÀýµÄ·½·¨£¬ÊÇ×ÛºÏÐÔÌâÄ¿£®
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\frac{1}{6}$ | B£® | $\frac{1}{5}$ | C£® | $\frac{1}{4}$ | D£® | $\frac{1}{3}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 128 | B£® | 81 | C£® | 64 | D£® | 49 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 4 | B£® | $\frac{1}{4}$ | C£® | $\frac{6}{5}$ | D£® | $\frac{5}{6}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | -120 | B£® | 120 | C£® | 30 | D£® | -80 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\frac{a}{m}$ | B£® | $\frac{{ap{{£¨1+p£©}^{m+1}}}}{{{{£¨1+p£©}^{m+1}}-1}}$ | ||
| C£® | $\frac{{ap{{£¨1+p£©}^{m+1}}}}{{{p^m}-1}}$ | D£® | $\frac{{ap{{£¨1+p£©}^m}}}{{{{£¨1+p£©}^m}-1}}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com