精英家教网 > 高中数学 > 题目详情
1.已知函数f(x)=|x-1|.
(Ⅰ)解不等式f(x-1)+f(x+3)≥6;
(Ⅱ)若|a|<1,|b|<1,且b≠0,求证:f(ab)>|b|f($\frac{a}{b}$).

分析 (Ⅰ)利用绝对值的应用将函数表示成分段函数形式,即可求f(x-1)+f(x+3)≥6的解集;
(Ⅱ)利用分析法,要证f(ab)>|a|f($\frac{a}{b}$),只需证证(ab-1)2>(b-a)2,再作差证明即可.

解答 解:(Ⅰ)由f(x-1)+f(x+3)≥6得|x-2|+|x+2|≥6,
若x≥2,则不等式等价为x-2+x+2≥6,即2x≥6,x≥3,
若-2<x<2,则不等式等价为-x+2+x+2≥6,即4≥6,此时不等式无解,
若x≤-2,则不等式等价为-(x-2)-(x+2)≥6,即-2x≥6,x≤-3,
综上x≥3或x≤-3,即不等式解集为(-∞,-3]∪[3,+∞);    …(5分)
(Ⅱ)∵f(ab)>|b|f($\frac{a}{b}$).等价为|ab-1|>|b||$\frac{a}{b}$-1|=|a-b|,
∴要证:|ab-1|>|b||$\frac{a}{b}$|成立,
只需证:|ab-1|>|a-b|成立,
只需证(ab-1)2>(b-a)2
而(ab-1)2-(b-a)2=a2b2-a2-b2+1=(a2-1)(b2-1)>0显然成立,
从而原不等式成立.   …(10分)

点评 本题考查绝对值不等式的解法,通过对x范围的分析讨论,去掉绝对值符号,利用一次函数的单调性求最值是关键,考查运算与推理证明的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.若$\int_0^k{({2x+4})dx=12}$,则k=(  )
A.3B.2C.1D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.小明、小红等4位同学各自申请甲乙两所大学的自主招生考试资格,则每所大学恰有两位同学申请,且小明、小红没有申请同一所大学的所有可能性有     种.(  )
A.4B.12C.6D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知在直角梯形ABCD中,AD⊥AB,AB∥DC,AB=2CD=2AD=2,P是以C为圆心,且与BD相切的圆上的动点,设$\overrightarrow{AP}=λ\overrightarrow{AD}+μ\overrightarrow{AB}$(λ,μ∈R),则λ+μ最大值为(  )
A.-1B.2C.1D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的焦距为2$\sqrt{3}$,且椭圆C过点A(1,$\frac{{\sqrt{3}}}{2}$),
(Ⅰ)求椭圆C的方程;
(Ⅱ)若O是坐标原点,不经过原点的直线l:y=kx+m与椭圆交于两不同点P(x1,y1),Q(x2,y2),且y1y2=k2x1x2,求直线l的斜率k;
(Ⅲ)在(Ⅱ)的条件下,求△OPQ面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.国内某大学有男生6000人,女生4000人,该校想了解本校学生的运动状况,根据性别采取分层抽样的方法从全校学生中抽取100人,调查他们平均每天运动的时间(单位:小时),统计表明该校学生平均每天运动的时间范围是[0,3],若规定平均每天运动的时间不少于2小时的学生为“运动达人”,低于2小时的学生为“非运动达人”.根据调查的数据按性别与“是否为‘运动达人’”进行统计,得到如下2×2列联表:
运动时间
性别
运动达人非运动达人合计
男生36
女生26
合计100
(1)请根据题目信息,将2×2列联表中的数据补充完整,并通过计算判断能否在犯错误概率不超过0.025的前提下认为性别与“是否为‘运动达人’”有关;
(2)将此样本的频率估计为总体的概率,随机调查该校的3名男生,设调查的3人中运动达人的人数为随机变量X,求X的分布列和数学期望E(X)及方差D(X).
附表及公式:
 P(K2≥k0 0.150.10 0.05 0.025 0.010 
 k0 2.0722.706 3.841  5.0246.635
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知0<x<$\frac{2}{3}$,f(x)=x3,g(x)=x2,则f′(x)<g′(x)(填>或<).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知A(4,0,2),B(2,-6,2),点M在x轴上,且到A,B两距离相等,则M的坐标为(  )
A.(-6,0,0)B.(0,-6,0)C.(0,0,-6)D.(6,0,0)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=cos(2x+$\frac{π}{6}$)+cos(2x-$\frac{π}{6}$)-cos(2x+$\frac{π}{2}$)+1.
(1)求函数f(x)的最小正周期和单调递减区间;
(2)若将函数f(x)的图象向左平移m(m>0)个单位后,得到的函数g(x)的图象关于直线x=$\frac{π}{4}$轴对称,求实数m的最小值.

查看答案和解析>>

同步练习册答案