精英家教网 > 高中数学 > 题目详情
11.若$\int_0^k{({2x+4})dx=12}$,则k=(  )
A.3B.2C.1D.4

分析 求出导函数的原函数,然后分别代入积分上限和积分下限得答案.

解答 解:由${∫}_{0}^{k}(2x+4)dx=({x}^{2}+4x){|}_{0}^{k}={k}^{2}+4k=12$,
得k2+4k-12=0,解得k=-6(舍)或k=2.
故选:B.

点评 本题考查定积分,关键是求出导函数的原函数,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.某学生家长为缴纳该学生上大学时的教育费,于2003年8月20号从银行贷款a元,为还清这笔贷款,该家长从2004年起每年的8月20号便去银行偿还确定的金额,计划恰好在贷款的m年后还清,若银行按年利息为p的复利计息(复利:即将一年后的贷款利息也纳入本金计算新的利息),则该学生家长每年的偿还金额是(  )
A.$\frac{a}{m}$B.$\frac{{ap{{(1+p)}^{m+1}}}}{{{{(1+p)}^{m+1}}-1}}$
C.$\frac{{ap{{(1+p)}^{m+1}}}}{{{p^m}-1}}$D.$\frac{{ap{{(1+p)}^m}}}{{{{(1+p)}^m}-1}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>0,b>0)$的离心率为$\frac{{\sqrt{3}}}{2}$,且焦距为4$\sqrt{3}$
(I)求椭圆C的方程;
(Ⅱ)设直线l:y=kx+m与椭圆C交于A、B两点,且△AOB的面积为4,其中O为坐标原点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.请阅读下列不等式的证法:已知a1,a2∈R,a12+a22=1,求证:|a1+a2|≤$\sqrt{2}$.
证明:构造函数f(x)=(x-a12+(x-a22
则f(x)=2x2-2(a1+a2)x+a12+a22=2x2-2(a1+a2)x+1.
因为对一切x∈R,恒有f(x)≥0,所以△=4(a1+a22-8≤0,从而得|a1+a2|≤$\sqrt{2}$.
请回答下面的问题:
若a1,a2,…,an∈R,a12+a22+…+an2=1,请写出上述结论的推广形式,并进行证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若(2x+$\frac{1}{\root{3}{x}}$)n的展开式中各项系数之和为729,则该二项式的展开式中x2项的系数为(  )
A.80B.120C.160D.180

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=4$\sqrt{3}$sinxcosx-4sin2x+1.
(1)求函数f(x)的最大值及此时x的值;
(2)在△ABC中,a,b,c分别为内角A,B,C的对边,且对f(x)定义域中的任意的x都有f(x)≤f(A),若a=2,求$\overrightarrow{AB}$$•\overrightarrow{AC}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知方程$sin({x+3})=\frac{m}{2}在[{0,π}]上有两个解,则m的取值范围为$(-2,2sin3].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=$\left\{\begin{array}{l}{{e}^{x},x>0}\\{-{x}^{2}-3x-1,x≤0}\end{array}\right.$ 若函数y=f(x)-kx只有2个零点,则实数k的取值范围是(  )
A.(-∞,1)B.(-∞,e)C.(-1,e)D.(-1,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=|x-1|.
(Ⅰ)解不等式f(x-1)+f(x+3)≥6;
(Ⅱ)若|a|<1,|b|<1,且b≠0,求证:f(ab)>|b|f($\frac{a}{b}$).

查看答案和解析>>

同步练习册答案