精英家教网 > 高中数学 > 题目详情
6.若(2x+$\frac{1}{\root{3}{x}}$)n的展开式中各项系数之和为729,则该二项式的展开式中x2项的系数为(  )
A.80B.120C.160D.180

分析 令x=1,则3n=729,解得n=6,再利用二项式定理的通项公式即可得出.

解答 解:令x=1,则3n=729,解得n=6,
∴$(2x+\frac{1}{\root{3}{x}})^{6}$的通项公式:Tr+1=${∁}_{6}^{r}$(2x)6-r$(\frac{1}{\root{3}{x}})^{r}$=26-r${∁}_{6}^{r}$${x}^{6-\frac{4r}{3}}$,
$6-\frac{4r}{3}$=2,解得r=3.
∴该二项式的展开式中x2项的系数=${2}^{3}×{∁}_{6}^{3}$=160.
故选:C.

点评 本题考查了二项式定理的通项公式及其性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.若实数x、y、m满足|x-m|>|y-m|,则称x比y远离m.
(1)若x2-1比1远离0,求x的取值范围;
(2)已知0<a1<a2<a3,求使得2比2-aix(i=1,2,3)远离1都成立的x取值范围;
(3)设0<x<1,且a≠1,则loga(1-x)比loga(1+x)那个远离零?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在平面直角坐标系中,动点M到定点F(-1,0)的距离和它到直线l:x=-2的距离之比是常数$\frac{\sqrt{2}}{2}$,记动点M的轨迹为T.
(1)求轨迹T的方程;
(2)过点F且不与x轴重合的直线m,与轨迹T交于A,B两点,线段AB的垂直平分线与x轴交于点P,与轨迹T是否存在点Q,使得四边形APBQ为菱形?若存在,请求出直线m的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若x,y满足约束条件$\left\{{\begin{array}{l}{x-1≥0}\\{x-y≤0}\\{x+y-4≤0}\end{array}}\right.$,则$\frac{y}{x}$的最大值为(  )
A.-2B.-3C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.如图,正三棱柱ABC-A1B1C1(底面是正三角形,侧棱垂直底面)的各条棱长均相等,D为AA1的中点.M、N分别是BB1、CC1上的动点(含端点),且满足BM=C1N.
当M、N运动时,下列结论中正确的是①②④(填上所有正确命题的序号).
①平面DMN⊥平面BCC1B1
②三棱锥A1-DMN的体积为定值;
③△DMN可能为直角三角形;
④平面DMN与平面ABC所成的锐二面角范围为$(0,\frac{π}{4}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若$\int_0^k{({2x+4})dx=12}$,则k=(  )
A.3B.2C.1D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设曲线y=xn+1(n∈N*)在点(1,1)处的切线与x轴的交点横坐标为xn,则log2012x1+log2012x2+…+log2012x2012的值为(  )
A.-log20122011B.-1C.-1+log20122011D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.由曲线y=sinx-$\sqrt{3}$cosx与直线y=0,x=$\frac{2π}{3}$,x=π所围成的图形的面积S是2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的焦距为2$\sqrt{3}$,且椭圆C过点A(1,$\frac{{\sqrt{3}}}{2}$),
(Ⅰ)求椭圆C的方程;
(Ⅱ)若O是坐标原点,不经过原点的直线l:y=kx+m与椭圆交于两不同点P(x1,y1),Q(x2,y2),且y1y2=k2x1x2,求直线l的斜率k;
(Ⅲ)在(Ⅱ)的条件下,求△OPQ面积的最大值.

查看答案和解析>>

同步练习册答案