精英家教网 > 高中数学 > 题目详情
11.已知函数f(x)=cos(2x+$\frac{π}{6}$)+cos(2x-$\frac{π}{6}$)-cos(2x+$\frac{π}{2}$)+1.
(1)求函数f(x)的最小正周期和单调递减区间;
(2)若将函数f(x)的图象向左平移m(m>0)个单位后,得到的函数g(x)的图象关于直线x=$\frac{π}{4}$轴对称,求实数m的最小值.

分析 (1)由条件利用三角恒等变换化简函数的解析式,再利用正弦函数的周期性、单调性得出结论.
(2)利用正弦函数的图象的对称性,求得m的最小正值.

解答 解:(1)∵函数f(x)=cos(2x+$\frac{π}{6}$)+cos(2x-$\frac{π}{6}$)-cos(2x+$\frac{π}{2}$)+1
=cos2xcos$\frac{π}{6}$-sin2xsin$\frac{π}{6}$+cos2xcos$\frac{π}{6}$+sin2xsin$\frac{π}{6}$)+sin2x+1=$\sqrt{3}$cos2x+sin2x+1=2sin(2x+$\frac{π}{3}$)+1,
∴函数f(x)的周期为$\frac{2π}{2}$=π.
令2kπ+$\frac{π}{2}$≤2x+$\frac{π}{3}$≤2kπ+$\frac{3π}{2}$,求得kπ+$\frac{π}{12}$≤x≤kπ+$\frac{7π}{12}$,可得函数的减区间为[kπ+$\frac{π}{12}$,kπ+$\frac{7π}{12}$],k∈Z.
(2)由题意可得g(x)=2sin(2x+2m+$\frac{π}{3}$)+1 的图象关于直线x=$\frac{π}{4}$轴对称,故有$\frac{π}{2}$+2m+$\frac{π}{3}$=kπ+$\frac{π}{2}$,
即m=$\frac{1}{2}$•kπ-$\frac{π}{6}$,k∈Z,故m的最小正值为$\frac{π}{3}$.

点评 本题主要考查三角恒等变换,正弦函数的周期性、单调性以及它的图象的对称性,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=|x-1|.
(Ⅰ)解不等式f(x-1)+f(x+3)≥6;
(Ⅱ)若|a|<1,|b|<1,且b≠0,求证:f(ab)>|b|f($\frac{a}{b}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知数列{an}满足a1=-1,an+1=$\frac{(3n+3){a}_{n}+(4n+6)}{n}$,数列{bn}满足bn=$\frac{{a}_{n}+2}{n}$.
(Ⅰ)求证:数列{bn}为等比数列并求{bn}的通项公式;
(Ⅱ)数列{cn}的前n项的和为Sn,且cn=$\frac{{3}^{n-1}}{{a}_{n}+2}$.求证:n≥2时,Sn2≥2($\frac{{S}_{2}}{2}$+$\frac{{S}_{3}}{3}$+…+$\frac{{S}_{n}}{n}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.把下列函数写成分段函数,画出图象并求值域.
(1)y=|2x-1|;
(2)y=|x+1|+|x-2|;
(3)y=|x-1|+$\frac{|x|}{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数y=sinx+$\sqrt{3}$cosx(0≤x<2π)取得最大值时,x=(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数y=f(x)在定义域内可导,导函数y=f′(x)的图象如图所示,则函数y=f(x)的图象可能为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图四棱锥P-ABCD中,PA⊥面ABCD,底面ABCD是平行四边形,∠ACB=90°,AB=$\sqrt{2}$,PA=BC=1,F是BC的中点.
(1)求证:DA⊥平面PAC;
(2)在线段PD上找一点G,使CG∥面PAF,说明点G位置并求三棱锥A-CDG的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知随机变量ζ服从正态分布N(0,σ2),若P(ζ>2)=0.06,则P(-2≤ζ≤2)=0.88.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在半径为1的圆上随机地取两点,连成一条线,则其长超过圆内接等边三角形的边长的概率是$\frac{1}{3}$.

查看答案和解析>>

同步练习册答案