如图,在平面直角坐标系xOy中,椭圆C的中心在坐标原点O,右焦点为F.若C的右准线l的方程为x=4,离心率e=
.
![]()
(1)求椭圆C的标准方程;
(2)设点P为准线l上一动点,且在x轴上方.圆M经过O、F、P三点,求当圆心M到x轴的距离最小时圆M的方程.
(1)
=1(2)(x-1)2+(y-2
)2=9.
【解析】(1)由题意,设椭圆C的标准方程为
=1(a>b>0),则
解得a=2
,c=2.从而b2=a2-c2=4.所以所求椭圆C的标准方程为
=1.
(2)(解法1)由(1)知F(2,0).由题意可设P(4,t),t>0.
线段OF的垂直平分线方程为x=1.①
因为线段FP的中点为
,斜率为
,
所以FP的垂直平分线方程为y-
=-
(x-3),即y=-
x+
+
.②
联立①②,解得
即圆心M
.
因为t>0,所以
+
≥2
=2
,当且仅当
=
,即t=2
时,圆心M到x轴的距离最小,此时圆心为M(1,2
),半径为OM=3.故所求圆M的方程为(x-1)2+(y-2
)2=9.
(解法2)由(1)知F(2,0).由题意可设P(4,t),t>0.因为圆M过原点O,故可设圆M的方程为x2+y2+Dx+Ey=0.将点F、P的坐标代入得
解得![]()
所以圆心M的坐标为
,即(1,
+
).因为t>0,所以
+
≥2
=2
,当且仅当
=
,即t=2
时,圆心M到x轴的距离最小,此时E=-4
.故所求圆M的方程为x2+y2-2x-4
y=0.D=-2,
科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第九章第7课时练习卷(解析版) 题型:填空题
已知F是椭圆C的一个焦点,B是短轴的一个端点,线段BF的延长线交C于点D,且
=2
,则C的离心率为________.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第九章第6课时练习卷(解析版) 题型:解答题
根据下列条件求椭圆的标准方程:
(1)两准线间的距离为
,焦距为2
;
(2)已知P点在以坐标轴为对称轴的椭圆上,点P到两焦点的距离分别为
和
,过P点作长轴的垂线恰好过椭圆的一个焦点.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第九章第5课时练习卷(解析版) 题型:解答题
已知以点C
(t∈R,t≠0)为圆心的圆与x轴交于点O、A,与y轴交于点O、B,其中O为原点.
(1)求证:△AOB的面积为定值;
(2)设直线2x+y-4=0与圆C交于点M、N,若|OM|=|ON|,求圆C的方程;
(3)在(2)的条件下,设P、Q分别是直线l:x+y+2=0和圆C的动点,求|PB|+|PQ|的最小值及此时点P的坐标.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第九章第5课时练习卷(解析版) 题型:解答题
直线l过点(-4,0)且与圆(x+1)2+(y-2)2=25交于A,B两点,如果AB=8,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第九章第5课时练习卷(解析版) 题型:填空题
以点(2,-2)为圆心并且与圆x2+y2+2x-4y+1=0相外切的圆的方程是________.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第九章第4课时练习卷(解析版) 题型:解答题
P(x,y)在圆C:(x-1)2+(y-1)2=1上移动,试求x2+y2的最小值.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第九章第11课时练习卷(解析版) 题型:解答题
已知曲线C上动点P(x,y)到定点F1(
,0)与定直线l1∶x=
的距离之比为常数
.
(1)求曲线C的轨迹方程;
(2)以曲线C的左顶点T为圆心作圆T:(x+2)2+y2=r2(r>0),设圆T与曲线C交于点M与点N,求
·
的最小值,并求此时圆T的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com