精英家教网 > 高中数学 > 题目详情

以点(2,-2)为圆心并且与圆x2+y2+2x-4y+1=0相外切的圆的方程是________.

 

(x-2)2+(y+2)2=9

【解析】设所求圆的方程为(x-2)2+(y+2)2=r2(r>0),此圆与圆x2+y2+2x-4y+1=0,即(x+1)2+(y-2)2=4相外切,所以=2+r,解得r=3.所以所求圆的方程为(x-2)2+(y+2)2=9.

 

练习册系列答案
相关习题

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第九章第8课时练习卷(解析版) 题型:解答题

双曲线C与椭圆=1有相同的焦点,直线y=x为C的一条渐近线.求双曲线C的方程.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第九章第6课时练习卷(解析版) 题型:解答题

若椭圆=1的焦距为2,求椭圆上的一点到两个焦点的距离之和.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第九章第5课时练习卷(解析版) 题型:解答题

如图,在平面直角坐标系xOy中,椭圆C的中心在坐标原点O,右焦点为F.若C的右准线l的方程为x=4,离心率e=.

(1)求椭圆C的标准方程;

(2)设点P为准线l上一动点,且在x轴上方.圆M经过O、F、P三点,求当圆心M到x轴的距离最小时圆M的方程.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第九章第5课时练习卷(解析版) 题型:解答题

求半径为4,与圆x2+y2-4x-2y-4=0相切,且和直线y=0相切的圆的方程.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第九章第4课时练习卷(解析版) 题型:解答题

已知圆C:x2+y2=9,点A(-5,0),直线l:x-2y=0.

(1)求与圆C相切,且与直线l垂直的直线方程;

(2)在直线OA上(O为坐标原点),存在定点B(不同于点A),满足:对于圆C上任一点P,都有为一常数,试求所有满足条件的点B的坐标.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第九章第4课时练习卷(解析版) 题型:填空题

若直线l:ax+by+4=0(a>0,b>0)始终平分圆C:x2+y2+8x+2y+1=0,则ab的最大值为________.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第九章第4课时练习卷(解析版) 题型:填空题

以两点A(-3,-1)和B(5,5)为直径端点的圆的方程是_________.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第九章第11课时练习卷(解析版) 题型:解答题

如图,椭圆C0:=1(a>b>0,a、b为常数),动圆C1:x2+y2=,b<t1<a.点A1、A2分别为C0的左、右顶点,C1与C0相交于A、B、C、D四点.

(1)求直线AA1与直线A2B交点M的轨迹方程;

(2)设动圆C2:x2+y2=与C0相交于A′,B′,C′,D′四点,其中b<t2<a,t1≠t2.若矩形ABCD与矩形A′B′C′D′的面积相等,证明:为定值.

 

查看答案和解析>>

同步练习册答案