精英家教网 > 高中数学 > 题目详情

若直线l:ax+by+4=0(a>0,b>0)始终平分圆C:x2+y2+8x+2y+1=0,则ab的最大值为________.

 

1

【解析】圆C的圆心坐标为(-4,-1),则有-4a-b+4=0,即4a+b=4.所以ab=(4ab)≤×=1.当且仅当a=,b=2取得等号.

 

练习册系列答案
相关习题

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第九章第7课时练习卷(解析版) 题型:解答题

已知椭圆=1(a>b>0)的离心率e=,连结椭圆的四个顶点得到的菱形的面积为4.

(1)求椭圆的方程;

(2)设直线l与椭圆相交于不同的两点A,B.已知点A的坐标为(-a,0).若|AB|=,求直线l的倾斜角.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第九章第5课时练习卷(解析版) 题型:解答题

已知以点C(t∈R,t≠0)为圆心的圆与x轴交于点O、A,与y轴交于点O、B,其中O为原点.

(1)求证:△AOB的面积为定值;

(2)设直线2x+y-4=0与圆C交于点M、N,若|OM|=|ON|,求圆C的方程;

(3)在(2)的条件下,设P、Q分别是直线l:x+y+2=0和圆C的动点,求|PB|+|PQ|的最小值及此时点P的坐标.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第九章第5课时练习卷(解析版) 题型:填空题

以点(2,-2)为圆心并且与圆x2+y2+2x-4y+1=0相外切的圆的方程是________.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第九章第4课时练习卷(解析版) 题型:解答题

如图,在平面斜坐标系xOy中,∠xOy=60°,平面上任一点P关于斜坐标系的斜坐标是这样定义的:若=xe1+ye2(其中e1、e2分别为与x轴、y轴同方向的单位向量),则P点斜坐标为(x,y).

(1)若P点斜坐标为(2,-2),求P到O的距离|PO|;

(2)求以O为圆心,1为半径的圆在斜坐标系xOy中的方程.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第九章第4课时练习卷(解析版) 题型:解答题

P(x,y)在圆C:(x-1)2+(y-1)2=1上移动,试求x2+y2的最小值.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第九章第4课时练习卷(解析版) 题型:解答题

已知t∈R,圆C:x2+y2-2tx-2t2y+4t-4=0.

(1)若圆C的圆心在直线x-y+2=0上,求圆C的方程;

(2)圆C是否过定点?如果过定点,求出定点的坐标;如果不过定点,说明理由.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第九章第3课时练习卷(解析版) 题型:解答题

已知直线l:x+2y-2=0,试求:

(1) 点P(-2,-1)关于直线l的对称点坐标;

(2) 直线l1:y=x-2关于直线l对称的直线l2的方程;

(3) 直线l关于点(1,1)对称的直线方程.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第九章第10课时练习卷(解析版) 题型:解答题

如图,已知椭圆C的方程为+y2=1,A、B是四条直线x=±2,y=±1所围成的矩形的两个顶点.

(1)设P是椭圆C上任意一点,若=m+n,求证:动点Q(m,n)在定圆上运动,并求出定圆的方程;

(2)若M、N是椭圆C上两个动点,且直线OM、ON的斜率之积等于直线OA、OB的斜率之积,试探求△OMN的面积是否为定值,并说明理由.

 

查看答案和解析>>

同步练习册答案