精英家教网 > 高中数学 > 题目详情

已知椭圆=1(a>b>0)的离心率e=,连结椭圆的四个顶点得到的菱形的面积为4.

(1)求椭圆的方程;

(2)设直线l与椭圆相交于不同的两点A,B.已知点A的坐标为(-a,0).若|AB|=,求直线l的倾斜角.

 

(1)+y2=1(2)

【解析】(1)由e=,解得3a2=4c2.再由c2=a2-b2,解得a=2b.

由题意可知×2a×2b=4,即ab=2.解方程组

所以椭圆的方程为+y2=1.

(2)由(1)可知点A(-2,0),设点B的坐标为(x1,y1),直线l的斜率为k,则直线l的方程为y=k(x+2).于是A、B两点的坐标满足方程组

消去y并整理,得(1+4k2)x2+16k2x+(16k2-4)=0,

由-2x1=,得x1=,从而y1=

故|AB|=.

由|AB|=,得.整理得32k4-9k2-23=0,

即(k2-1)(32k2+23)=0,解得k=±1.所以直线l的倾斜角为

 

练习册系列答案
相关习题

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第十一章第4课时练习卷(解析版) 题型:填空题

某班级有男生12人、女生10人,现选举4名学生分别担任班长、副班长、团支部书记和体育班委,则至少两名男生当选的概率为________.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第九章第9课时练习卷(解析版) 题型:解答题

已知抛物线的顶点在原点,对称轴为坐标轴,焦点在直线2x-y-4=0上,求抛物线的标准方程.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第九章第8课时练习卷(解析版) 题型:解答题

双曲线C与椭圆=1有相同的焦点,直线y=x为C的一条渐近线.求双曲线C的方程.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第九章第8课时练习卷(解析版) 题型:填空题

双曲线的焦点在x轴上,虚轴长为12,离心率为,则双曲线的标准方程为______________________.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第九章第7课时练习卷(解析版) 题型:解答题

如图,在平面直角坐标系xOy中,已知F1,F2分别是椭圆E:=1(a>b>0)的左、右焦点,A,B分别是椭圆E的左、右顶点,且+5=0.

(1)求椭圆E的离心率; (2)已知点D(1,0)为线段OF2的中点,M为椭圆E上的动点(异于点A、B),连结MF1并延长交椭圆E于点N,连结MD、ND并分别延长交椭圆E于点P、Q,连结PQ,设直线MN、PQ的斜率存在且分别为k1、k2,试问是否存在常数λ,使得k1+λk2=0恒成立?若存在,求出λ的值;若不存在,说明理由.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第九章第7课时练习卷(解析版) 题型:解答题

设A、B分别为椭圆=1(a>b>0)的左、右顶点,椭圆长半轴的长等于焦距,且直线x=4是它的右准线.

(1)求椭圆的方程;

(2)设P为椭圆右准线上不同于点(4,0)的任意一点,若直线BP与椭圆相交于两点B、N,求证:∠NAP为锐角.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第九章第6课时练习卷(解析版) 题型:解答题

若椭圆=1的焦距为2,求椭圆上的一点到两个焦点的距离之和.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第九章第4课时练习卷(解析版) 题型:填空题

若直线l:ax+by+4=0(a>0,b>0)始终平分圆C:x2+y2+8x+2y+1=0,则ab的最大值为________.

 

查看答案和解析>>

同步练习册答案