精英家教网 > 高中数学 > 题目详情

【题目】设函数f(x)=2lnx+ . (Ⅰ)讨论函数f(x)的单调性;
(Ⅱ)如果对所有的x≥1,都有f(x)≤ax,求a的取值范围.

【答案】解:(Ⅰ) f(x)的定义域为(0,+∞),f′(x)= , 当0<x< 时,f′(x)<0,
当x> 时,f′(x)>0,
所以函数f(x)在(0, )上单调递减,在( ,+∞)单调递增.
(Ⅱ)当x≥1时,f(x)≤axa≥ +
令h(x)= + ,(x≥1),
则h′(x)= =
令m(x)=x﹣xlnx﹣1,(x≥1),
则m′(x)=﹣lnx,
当x≥1时,m′(x)≤0,
于是m(x)在[1,+∞)上为减函数,
从而m(x)≤m(1)=0,因此h′(x)≤0,
于是h(x)在[1,+∞)上为减函数,
所以当x=1时h(x)有最大值h(1)=1,
故a≥1,即a的取值范围是[1,+∞).
【解析】(Ⅰ)先求导,利用导数和函数单调性的关系即可求出;(Ⅱ)分离参数,a≥ + ,构造函数h(x)= + ,求导,再构造函数m(x)=x﹣xlnx﹣1,利用导数求出函数的最大值,问题得以解决.
【考点精析】认真审题,首先需要了解函数单调性的判断方法(单调性的判定法:①设x1,x2是所研究区间内任两个自变量,且x1<x2;②判定f(x1)与f(x2)的大小;③作差比较或作商比较),还要掌握函数单调性的性质(函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集)的相关知识才是答题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知向量 =(2 cosx,cosx), =(sinx,2cosx)(x∈R),设函数f(x)= ﹣1. (Ⅰ)求函数f(x)的单调减区间;
(Ⅱ)已知锐角△ABC的三个内角分别为A,B,C,若f(A)=2,B= ,边AB=3,求边BC.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,等腰梯形BCDP中,BC∥PD,BA⊥PD于点A,PD=3BC,且AB=BC=1.沿AB把△PAB折起到△P'AB的位置(如图2),使∠P'AD=90°. (Ⅰ)求证:CD⊥平面P'AC;
(Ⅱ)求二面角A﹣P'D﹣C的余弦值;
(Ⅲ)线段P'A上是否存在点M,使得BM∥平面P'CD.若存在,指出点M的位置并证明;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设D是函数y=f(x)定义域内的一个区间,若存在x0∈D,使f(x0)=﹣x0 , 则称x0是f(x)的一个“次不动点”,也称f(x)在区间D上存在次不动点.若函数f(x)=ax2﹣3x﹣a+ 在区间[1,4]上存在次不动点,则实数a的取值范围是(
A.(﹣∞,0)
B.(0,
C.[ ,+∞)
D.(﹣∞, ]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,曲线C1的参数方程为 (其中α为参数),以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=4sinθ. (Ⅰ)若A,B为曲线C1 , C2的公共点,求直线AB的斜率;
(Ⅱ)若A,B分别为曲线C1 , C2上的动点,当|AB|取最大值时,求△AOB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数y=f(x)在区间I上是增函数,且函数 在区间I上是减函数,则称函数f(x)是区间I上的“H函数”.对于命题:①函数 是(0,1)上的“H函数”;②函数 是(0,1)上的“H函数”.下列判断正确的是(
A.①和②均为真命题
B.①为真命题,②为假命题
C.①为假命题,②为真命题
D.①和②均为假命题

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2sin(ωx+φ)(ω>0,0<φ<π)的图象上相邻两个最高点的距离为π.若将函数f(x)的图象向左平移 个单位长度后,所得图象关于y轴对称.则函数f(x)的解析式为(
A.f(x)=2sin(x+
B.f(x)=2sin(x+ )?
C.f(x)=2sin(2x+
D.f(x)=2sin(2x+

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数y=f(x),若在定义域内存在x0 , 使得f(﹣x0)=﹣f(x0)成立,则称x0为函数f(x)的局部对称点.
(I)若a∈R且a≠0,求函数f(x)=ax2+x﹣a的“局部对称点”;
(II)若函数f(x)=4x﹣m2x+1+m2﹣3在R上有局部对称点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C1 =1(a>b>0)的左、右焦点分别为F1、F2 , 其中F2也是抛物线C2:y2=4x的焦点,M是C1与C2在第一象限的交点,且
(I)求椭圆C1的方程;
(Ⅱ)已知菱形ABCD的顶点A、C在椭圆C1上,顶点B、D在直线7x﹣7y+1=0上,求直线AC的方程.

查看答案和解析>>

同步练习册答案