精英家教网 > 高中数学 > 题目详情
7.(1+x)(1+$\sqrt{x}$)5展开式的所有项系数的和是64.

分析 令x=1,可得(1+x)(1+$\sqrt{x}$)5展开式的所有项系数的和.

解答 解:令x=1,可得(1+x)(1+$\sqrt{x}$)5展开式的所有项系数的和是 26=64,
故答案为:64.

点评 本题主要考查二项式定理的应用,注意根据题意,分析所给代数式的特点,通过给二项式的x赋值,求展开式的系数和,可以简便的求出答案,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.根据条件求值:
(1)已知lg2=a,lg3=b,求lg$\sqrt{54}$.
(2)已知logax=m,logay=n,求loga($\root{4}{a}$•$\root{3}{\frac{x}{\root{4}{y}}}$).
(3)已知lnx=2lna+3lnb-5lnc,求x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.集合M是具有以下性质的函数f(x)的全体:对于任意a,b>0,都有f(a)>0,f(b)>0,且f(a)+f(b)<f(a+b).
(1)试判断函数f(x)=2x-1是否属于集合M?
(2)证明:集合M中的函数f(x)在区间(0,+∞)上是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.计算10lg3-10•ln1+${π}^{lo{g}_{π}5}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知命题p:函数y=lg(ax2-x+$\frac{1}{2}$)(a≠0)的定义域为R;命题q:指数函数y=(5-2a)x在R上单调递增,若“p∧q”为假命题,“p∨q”为真命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知复数z=1+i.
(Ⅰ)若w=z2+3$\overline{z}$-4,求w的值;
(Ⅱ)若$\frac{{z}^{2}+az+b}{{z}^{2}-z+1}$=1-i,求|a+bi|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设f(x)是定义在R+上的函数,且满足条件:(1)f(xy)=f(x)+f(y);(2)f(2)=1;(3)在(0,+∞)上是增函数,如果f(x)+f(x-3)≤2,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若函数y=log2(x+k)的图象恒过(0,0)点,则函数y=${log}_{\frac{1}{2}}$(x-k)的图象恒过点(2,0).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知x<0,函数y=$\frac{4}{x}$+x+1的最大值是-3.

查看答案和解析>>

同步练习册答案