精英家教网 > 高中数学 > 题目详情
(2012•泰安二模)如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,PA=AB=
2
,AD=1
,点E是棱PB的中点.
(I)求证:平面ECD⊥平面PAD;
(II)求二面角A-EC-D的平面角的余弦值.
分析:(I)证明CD⊥平面PAD,利用面面垂直的判定,可证平面ECD⊥平面PAD;
(II)过点D作DF⊥CE,过点F作FG⊥CE,交AC于G,则∠DFG为所求的二面角的平面角,先利用AD⊥平面PAB,故AD⊥AE,从而求得DE,在Rt△CBE中,利用勾股定理求得CE,进而可知CE=CD推断出△CDE为等边三角形,求得DF,因为AE⊥平面PBC,故AE⊥CE,又FG⊥CE,知FG平行且等于AE的一半,从而求得FG,且G点为AC的中点,连接DG,则在Rt△ADC中,求得DG,最后利用余弦定理求得答案.
解答:(I)证明:∵PA⊥平面ABCD,CD?平面ABCD,∴PA⊥CD,
∵底面ABCD为矩形,∴AD⊥CD
∵PA∩AD=A,∴CD⊥平面PAD
∵CD?平面ECD,
∴平面ECD⊥平面PAD;
(II)解:过点D作DF⊥CE,过点F作FG⊥CE,交AC于G,则∠DFG为所求的二面角的平面角.
∵AD⊥AB,AD⊥PA,AB∩PA=A,∴AD⊥平面PAB,∴AD⊥AE,从而DE=
AE2+AD2
=
2

在Rt△CBE中,CE=
BE2+BC2
=
2

∵CD=
2
,∴△CDE为等边三角形,故F为CE的中点,且DF=CD•sin60°=
6
2

因为AE⊥平面PBC,故AE⊥CE,又FG⊥CE,知FG∥AE.且FG=
1
2
AE,
从而FG=
1
2
,且G点为AC的中点,连接DG,则在Rt△ADC中,DG=
1
2
AD2+CD2
=
3
2

所以cos∠DFG=
DF2+FG2-DG2
2DF•FG
=
6
3
点评:本题考查面面垂直,考查面面角,解题的关键是掌握面面垂直的判定定理,正确作出面面角,求出三角形的三边,利用余弦定理求面面角.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•泰安二模)设f(x)是周期为2的奇函数,当0≤x≤1时,f(x)=2x(1-x),则f(-
5
2
)
=
-
1
2
-
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•泰安二模)在△ABC中,∠BAC=60°,AB=2,AC=1,E,F为边BC的三等分点,则
AE
AF
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•泰安二模)下列命题中的真命题是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•泰安二模)已知A,B,C,D,E是函数y=sin(ωx+?)(ω>0,0<?<
π
2
)
一个周期内的图象上的五个点,如图所示,A(-
π
6
,0)
,B为y轴上的点,C为图象上的最低点,E为该函数图象的一个对称中心,B与D关于点E对称,
CD
在x轴上的投影为
π
12
,则ω,?的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•泰安二模)已知f(x)=(
1
2
)x-log3x
,实数a、b、c满足f(a)f(b)f(c)<0,且0<a<b<c,若实数x0是函数f(x)的一个零点,那么下列不等式中,不可能成立的是(  )

查看答案和解析>>

同步练习册答案