【题目】函数的部分图象如图,是图象的一个最低点,图象与轴的一个交点坐标为,与轴的交点坐标为.
(1)求,,的值;
(2)关于的方程在上有两个不同的解,求实数的取值范围.
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中, 平面平面,.
(1)求证:平面;
(2)求直线与平面所成角的正弦值;
(3)在棱上是否存在点,使得平面?若存在, 求的值;若不存在, 说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆的圆心为,且直线与圆相切,设直线的方程为,若点在直线上,过点作圆的切线,切点为.
(1)求圆的标准方程;
(2)若,试求点的坐标;
(3)若点的坐标为,过点作直线与圆交于两点,当时,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】单位计划组织55名职工进行一种疾病的筛查,先到本单位医务室进行血检,血检呈阳性者再到医院进一步检测.已知随机一人血检呈阳性的概率为 1% ,且每个人血检是否呈阳性相互独立.
(Ⅰ) 根据经验,采用分组检测法可有效减少工作量,具体操作如下:将待检人员随机等分成若干组,先将每组的血样混在一起化验,若结果呈阴性,则可断定本组血样全部为阴性,不必再化验;若结果呈阳性,则本组中至少有一人呈阳性,再逐个化验.
现有两个分组方案:
方案一: 将 55 人分成 11 组,每组 5 人;
方案二:将 55 人分成5组,每组 11 人;
试分析哪一个方案工作量更少?
(Ⅱ) 若该疾病的患病率为 0.4% ,且患该疾病者血检呈阳性的概率为99% ,该单位有一职工血检呈阳性,求该职工确实患该疾病的概率.(参考数据: )
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com