精英家教网 > 高中数学 > 题目详情

【题目】函数的部分图象如图,是图象的一个最低点,图象与轴的一个交点坐标为,与轴的交点坐标为.

1)求的值;

2)关于的方程上有两个不同的解,求实数的取值范围.

【答案】(1) .(2)

【解析】

1)利用的部分图象可求得其周期,从而可求得;由其图象与轴的一个交点坐标为可求得,当时,,可求得

2)求出函数的取值情况,利用数形结合即可得到结论.

解:(1)由题图可知,函数的周期

∵图象与轴的一个交点坐标为

,∴,故

得,

,∴

时,

综上可知,

2)由(1)可得:

时,

可得:

,要使方程上有两个不同的解.

上有两个不同的解,即函数上有两个不同的交点,由图象可知

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥, 平面平面,.

1)求证:平面

2)求直线与平面所成角的正弦值;

3)在棱上是否存在点,使得平面?若存在, 的值;若不存在, 说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆的圆心为,且直线与圆相切,设直线的方程为,若点在直线上,过点作圆的切线,切点为.

(1)求圆的标准方程;

(2)若,试求点的坐标;

(3)若点的坐标为,过点作直线与圆交于两点,当时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面,,,.

(1)求证:平面

(2)中点,为线段上一点,平面,求的值;

(3)求二面角的的大小;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在三棱柱中,中点,平面,平面与棱交于点

(1)求证:

(2)求证:

(3)若与平面所成角的正弦值为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,

(1)求证:平面平面

(2)的中点,求证:平面

(3)与平面所成的角为求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】单位计划组织55名职工进行一种疾病的筛查,先到本单位医务室进行血检,血检呈阳性者再到医院进一步检测.已知随机一人血检呈阳性的概率为 1% ,且每个人血检是否呈阳性相互独立.

(Ⅰ) 根据经验,采用分组检测法可有效减少工作量,具体操作如下:将待检人员随机等分成若干组,先将每组的血样混在一起化验,若结果呈阴性,则可断定本组血样全部为阴性,不必再化验;若结果呈阳性,则本组中至少有一人呈阳性,再逐个化验.

现有两个分组方案:

方案一: 将 55 人分成 11 组,每组 5 人;

方案二:将 55 人分成5组,每组 11 人;

试分析哪一个方案工作量更少?

(Ⅱ) 若该疾病的患病率为 0.4% ,且患该疾病者血检呈阳性的概率为99% ,该单位有一职工血检呈阳性,求该职工确实患该疾病的概率.(参考数据: )

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过点的直线l与圆相交于AB两点,且,则直线l的方程为( )

A. B. ,或

C. ,或 D. ,或

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-5:不等式选讲

已知函数.

(1)求不等式的解集;

(2)若恒成立,求的取值范围.

查看答案和解析>>

同步练习册答案