已知函数在点处的切线方程为
(1)求函数的解析式;
(2)若对于区间[-2,2]上任意两个自变量的值都有求实数c的最小值.
(1) f(x)=x3-3x. (2) c的最小值为4.
【解析】
试题分析:(1)f′(x)=3ax2+2bx-3.
根据题意,得
即 解得
所以f(x)=x3-3x.
(2)令f′(x)=0,即3x2-3=0,得x=±1.
x |
-2 |
(-2,-1) |
-1 |
(-1,1) |
1 |
(1,2) |
2 |
f′(x) |
|
+ |
|
- |
|
+ |
|
f(x) |
-2 |
? |
极大值 |
? |
极小值 |
? |
2 |
因为f(-1)=2,f(1)=-2,
所以当x∈[-2,2]时,f(x)max=2,f(x)min=-2.
( 需列表格或者说明单调性,否则扣2分)
则对于区间[-2,2]上任意两个自变量的值x1,x2,都有|f(x1)-f(x2)|≤|f(x)max-f(x)min|=4,
所以c≥4.即c的最小值为4.
考点:本题主要考查导数的几何意义,应用导数研究函数的单调性、最值,待定系数法。
点评:典型题,本题属于导数应用中的基本问题,首先利用待定系数法,求得函数解析式,为进一步解题奠定了基础。利用“表解法”写出函数单调性、极值,直观明了。
科目:高中数学 来源:2014届辽宁省五校协作体届高三摸底考试理科数学试卷(解析版) 题型:解答题
已知函数在点处的切线方程是x+ y-l=0,其中e为自然对数的底数,函数g(x)=1nx- cx+ 1+ c(c>0),对一切x∈(0,+)均有恒成立.
(Ⅰ)求a,b,c的值;
(Ⅱ)求证:.
查看答案和解析>>
科目:高中数学 来源:2014届云南省高二下学期期末考试文科数学试卷(解析版) 题型:解答题
已知函数在点处的切线方程为.
(1)求函数的解析式;
(2)若经过点可以作出曲线的三条切线,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源:2012-2013学年山东省高三第一次(3月)周测理科数学试卷(解析版) 题型:解答题
已知函数在点处的切线方程为,且对任意的,恒成立.
(Ⅰ)求函数的解析式;
(Ⅱ)求实数的最小值;
(Ⅲ)求证:().
查看答案和解析>>
科目:高中数学 来源:2014届江西省南昌市高二2月份月考文科数学试卷(解析版) 题型:解答题
(本小题13分)已知函数在点处的切线与直线垂直.
(1)若对于区间上任意两个自变量的值都有,求实数的最小值;
(2)若过点可作曲线的三条切线,求实数的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com