已知函数
在点
处的切线方程为
,且对任意的
,
恒成立.
(Ⅰ)求函数
的解析式;
(Ⅱ)求实数
的最小值;
(Ⅲ)求证:
(
).
(Ⅰ)
(Ⅱ)
(Ⅲ)先证
,累加即得.
【解析】
试题分析:(Ⅰ)将
代入直线方程得
,∴
①
,∴
②
联立,解得
∴
(Ⅱ)
,∴
在
上恒成立;
即
在
恒成立;
设
,
,
∴只需证对于任意的
有
![]()
设
,
1)当
,即
时,
,∴![]()
在
单调递增,∴
2)当
,即
时,设
是方程
的两根且![]()
由
,可知
,分析题意可知当
时对任意
有
;
∴
,∴
综上分析,实数
的最小值为
.
(Ⅲ)令
,有
即
在
恒成立;
令
,得
![]()
∴原不等式得证.
考点:利用导数研究曲线上某点切线方程;函数解析式的求解及常用方法;不等式的证明.
点评:本题考查了利用导数研究函数的切线方程问题,在曲线上某点处的切线的斜率就是该点的导数值,考查了导数在最大值和最小值中的应用,体现了数学转化思想和分类讨论的数学思想.特别是(Ⅲ)的证明,用到了放缩法和裂项相消,此题属难度较大的题目.
科目:高中数学 来源:2014届辽宁省五校协作体届高三摸底考试理科数学试卷(解析版) 题型:解答题
已知函数
在点
处的切线方程是x+ y-l=0,其中e为自然对数的底数,函数g(x)=1nx- cx+ 1+ c(c>0),对一切x∈(0,+
)均有
恒成立.
(Ⅰ)求a,b,c的值;
(Ⅱ)求证:
.
查看答案和解析>>
科目:高中数学 来源:2014届云南省高二下学期期末考试文科数学试卷(解析版) 题型:解答题
已知函数
在点
处的切线方程为
.
(1)求函数
的解析式;
(2)若经过点
可以作出曲线
的三条切线,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源:2014届江西省南昌市高二2月份月考文科数学试卷(解析版) 题型:解答题
(本小题13分)已知函数
在点
处的切线与直线
垂直.
(1)若对于区间
上任意两个自变量的值
都有
,求实数
的最小值;
(2)若过点
可作曲线
的三条切线,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源:2012-2013学年江苏省苏南四校高三12月月考试数学试卷(解析版) 题型:解答题
已知函数
在点
处的切线方程为![]()
(1)求函数
的解析式;
(2)若对于区间[-2,2]上任意两个自变量的值
都有
求实数c的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com