精英家教网 > 高中数学 > 题目详情

【题目】某地区2011年至2017年农村居民家庭人均纯收入y(单位:千元)的数据如下表:

年份

2011

2012

2013

2014

2015

2016

2017

年份代号t

1

2

3

4

5

6

7

人均纯收入y

2.9

3.3

3.6

4.4

4.8

5.2

5.9

(1)求样本中心点坐标;

(2)已知两变量线性相关,求y关于t的线性回归方程;

(3)利用(2)中的线性回归方程,分析2011年至2017年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2019年农村居民家庭人均纯收入.

附:回归直线的斜率和截距的最小二乘估计公式分别为:.

【答案】(1);(2)=0.5t+2.3;(3)见解析

【解析】

1)由表中数据计算 即可

(2)由所给数据计算出回归系数,写出回归方程即可;

3)由0.50y关于t正相关,求出t9的值即可.

(1)由所给数据计算得

(1+2+3+4+5+6+7)=4,

(2.9+3.3+3.6+4.4+4.8+5.2+5.9)=4.3,

所以样本中心点为 .

2=9+4+1+0+1+4+9=28,

=(-3)×(-1.4)+(-2)×(-1)+(-1)×(-0.7)+0×0.1+1×0.5+2×0.9+3×1.6=14,

=0.5,=4.3-0.5×4=2.3,

故所求线性回归方程为=0.5t+2.3.

(3)由(2)知,=0.5>0,故2011年至2017年该地区农村居民家庭人均纯收入逐年增加,平均每年增加0.5千元.将2019年的年份代号t=9代入(2)中的线性回归方程,得=0.5×9+2.3=6.8,故预测该地区2019年农村居民家庭人均纯收入为6.8千元.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】给出下列四个命题:①命题“若,则”的逆否命题为假命题:

②命题“若,则”的否命题是“若,则”;

③若“”为真命题,“”为假命题,则为真命题,为假命题;

④函数有极值的充要条件是 .

其中正确的个数有( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,椭圆经过点,且点到椭圆的两焦点的距离之和为.

(l)求椭圆的标准方程;

(2)若是椭圆上的两个点,线段的中垂线的斜率为且直线交于点为坐标原点,求证:三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l:x﹣y=1与圆Γ:x2+y2﹣2x+2y﹣1=0相交于A,C两点,点B,D分别在圆Γ上运动,且位于直线l的两侧,则四边形ABCD面积的最大值为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某算法的程序框图如图所示,若将输出的(x,y)值依次记为(x1,y1),(x2,y2),…,(xn,yn),….

(1)若程序运行中输出的一个数组是(9,t),求t的值;

(2)程序结束时,共输出(x,y)的组数为多少;

(3)写出程序框图的程序语句.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我市某机构调查小学生课业负担的情况,设平均每人每天做作业时间为X(单位:分钟),按时间分下列四种情况统计:①0~30分钟;②30~60分钟;③60~90分钟;④90分钟以上,有1000名小学生参加了此项调查,如图是此次调查中某一项的程序框图,其输出的结果是600,则平均每天做作业时间在0~60分钟内的学生的频率是( )

A. 0.20B. 0.80C. 0.60D. 0.40

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,△ABC内接于圆O,D是 的中点,∠BAC的平分线分别交BC和圆O于点E,F. (Ⅰ)求证:BF是△ABE外接圆的切线;
(Ⅱ)若AB=3,AC=2,求DB2﹣DA2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设△ABC的内角A,B,C所对边分别为a,b,c,且a+c=6,b=2,cosB=
(1)求a,c的值;
(2)求sin(A﹣B)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我校高二年级共2000名学生,其中男生1200人.为调查学生们的手机使用情况,采用分层抽样的方法,随机抽取100位学生每周平均使用手机上网时间的样本数据(单位:小时).根据这100个数据,得到学生每周平均使用手机上网时间的频率分布直方图(如图所示),其中样本数据分组区间分别为.

(1)应收集男生、女生样本数据各多少人?

(2)估计我校高二年级学生每周平均使用手机上网时间超过4小时的概率.

(3)将平均每周使用手机上网时间在内定义为“长时间使用手机”,在内定义为“短时间使用手机”.在样本数据中,有25名学生不近视.请完成下列2×2列联表,并判断是否有99.5%的把握认为“学生每周使用手机上网时间与近视程度有关”.

近视

不近视

合计

长时间使用手机上网

短时间使用手机上网

15

合计

25

附:

0.100

0.050

0.010

0.005

2.706

3.841

6.635

7.879

查看答案和解析>>

同步练习册答案