精英家教网 > 高中数学 > 题目详情
设函数f(x)=sinxcosx-
3
cos(x+π)cosx
(x∈R)
(I)求函数f(x)图象的对称轴方程和对称中心坐标;
(II)若函数y=f(x)的图象按
b
=(
π
4
3
2
)
平移后得到函数y=g(x)的图象,求y=g(x)在(0,
π
2
]
上的取值范围.
分析:(I)化简f(x)的解析式为sin(2x+
π
3
)+
3
2
,由2x+
π
3
=kπ+
π
2
,k∈z 求得对称轴方程;令sin(2x+
π
3
)
=0 可得 2x+
π
3
=kπ,k∈z,解得 x的值,即为对称中心的横坐标,再由对称中心的纵坐标为
3
2
求出对称中心坐标.
(II)求出g(x)=sin(2x-
π
6
)+
3
.根据0<x≤
π
2
,可得-
π
6
<2x-
π
6
6
,故-
1
2
<sin(2x-
π
6
)≤1,从而求得g(x)的值域.
解答:解:(I)函数f(x)=sinxcosx-
3
cos(x+π)cosx
=
1
2
sin2x+
3
2
cos2x=sin(2x+
π
3
)+
3
2

由2x+
π
3
=kπ+
π
2
,k∈z 求得对称轴方程为x=
π
12
+
2
,k∈Z

sin(2x+
π
3
)
=0 可得 2x+
π
3
=kπ,k∈z,解得 x=-
π
6
+
2

故对称中心坐标为(-
π
6
+
2
3
2
),k∈Z

(II)函数y=f(x)的图象按
b
=(
π
4
3
2
)
平移后得到函数y=g(x)=sin[2(x-
π
4
)+
π
3
]+
3
2
+
3
2
 
=sin(2x-
π
6
)+
3

再由 0<x≤
π
2
,可得-
π
6
<2x-
π
6
6
,∴-
1
2
<sin(2x-
π
6
)≤1,
-
1
2
+
3
<sin(2x-
π
6
)+
3
≤1+
3

故y=g(x)在(0,
π
2
]
上的取值范围是(-
1
2
+
3
,1+
3
]
点评:本题主要考查函数y=Asin(ωx+∅)的图象变换,三角函数的恒等变换及化简求值,正弦函数的定义域和值域,三角函数的对称性,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=sinx+tanx,x∈(-
π
2
π
2
)
,项数为25的等差数列an且公差d≠0,若f(a1)+f(a2)+f(a3)+…+f(a25)=0,则i=
 
有f(ai)=0.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=sinx•cosx+
3
cos2x

(1)求f(x)的最小正周期;
(2)已知f(α)=
1
3
+
3
2
α∈(
π
12
π
3
)
,求cos2α.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=sinx-
3
cosx+x+1

(Ⅰ)求函数f(x)在x=0处的切线方程;
(Ⅱ)记△ABC的内角A、B、C的对边长分别为a、b、c,f′(B)=3且a+c=2,求边长b的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=|sinx+
2
3+sinx
+m|(x∈R,m∈R)
最大值为g(m),则g(m)的最小值为
3
4
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知设函数
f(x)=
sinx,(0≤x≤
π
2
)
-
π
2
x+2,(
π
2
<x≤π)
π
0
f(x)dx
=
-
π3
4
+π+1
-
π3
4
+π+1

查看答案和解析>>

同步练习册答案