精英家教网 > 高中数学 > 题目详情
已知函数.
(1)证明:
(2)当时,,求的取值范围.
(1)证明过程详见解析;(2).

试题分析:本题考查导数的运算以及利用导数研究函数的单调性、最值等基础知识,考查综合分析问题解决问题的能力、转化能力和计算能力.第一问,因为,所求证,所以只需分母即可,设函数,对求导,判断函数的单调性,求出最小值,证明最小值大于0即可,所求证的不等式的右边,需证明函数的最大值为1即可,对求导,判断单调性求最大值;第二问,结合第一问的结论,讨论的正负,当时,,而矛盾,当时,当时,矛盾,当时,分母去分母,等价于,设出新函数,需要讨论的情况,判断在每种情况下,是否大于0,综合上述所有情况,写出符合题意的的取值范围.
试题解析:(Ⅰ)设,则
时,单调递减;
时,单调递增.
所以
,故.           2分

时,单调递增;
时,单调递减.
所以
综上,有.           5分
(Ⅱ)(1)若,则时,,不等式不成立.  6分
(2)若,则当时,,不等式不成立.  7分
(3)若,则等价于.  ①
,则
,则当单调递增,. 9分
,则当单调递减,
于是,若,不等式①成立当且仅当.      11分
综上,的取值范围是
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数,().
(1)求函数的单调区间;
(2)求证:当时,对于任意,总有成立.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数处取得极值.
(Ⅰ)求的值;
(Ⅱ)证明:当时,.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

使y=sin xax在R上是增函数的a的取值范围为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=-x3x2g(x)=aln xa∈R.
(1)若对任意x∈[1,e],都有g(x)≥-x2+(a+2)x恒成立,求a的取值范围;
(2)设F(x)=P是曲线yF(x)上异于原点O的任意一点,在曲线yF(x)上总存在另一点Q,使得△POQ中的∠POQ为钝角,且PQ的中点在y轴上,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数f(x)=x3-3axb(a>0)的极大值为6,极小值为2,则f(x)的单调递减区间是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

可导函数的导函数为,且满足:①;②,记的大小顺序为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数点处取到极值,其中是坐标原点,在曲线上,则曲线的切线的斜率的最大值是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若幂函数f(x)的图象过点(),则函数g(x)=f(x)的单调递减区间为(   )
A.(-∞,0)B.(-∞,-2)C.(-2,-1)D.(-2,0)

查看答案和解析>>

同步练习册答案