精英家教网 > 高中数学 > 题目详情
14.设直线l与抛物线y2=4x相交于A、B两点,与圆(x-5)2+y2=r2(r>0)相切于点M,且M为线段AB的中点,若这样的直线l恰有4条,则r的取值范围是(  )
A.(1,3)B.(1,4)C.(2,3)D.(2,4)

分析 先确定M的轨迹是直线x=3,代入抛物线方程可得y=±2$\sqrt{3}$,所以交点与圆心(5,0)的距离为4,即可得出结论.

解答 解:设A(x1,y1),B(x2,y2),M(x0,y0),
斜率存在时,设斜率为k,则y12=4x1,y22=4x2
则$\left\{\begin{array}{l}{{{y}_{1}}^{2}=4{x}_{1}}\\{{{y}_{2}}^{2}=4{x}_{2}}\end{array}$,相减,得(y1+y2)(y1-y2)=4(x1-x2),
当l的斜率存在时,利用点差法可得ky0=2,
因为直线与圆相切,所以$\frac{{y}_{0}}{{x}_{0}-5}$=-$\frac{1}{k}$,所以x0=3,
即M的轨迹是直线x=3.
将x=3代入y2=4x,得y2=12,∴-2$\sqrt{3}<{y}_{0}<2\sqrt{3}$,
∵M在圆上,∴(x0-5)2+y02=r2,∴r2=y02+4<12+4=16,
∵直线l恰有4条,∴y0≠0,∴4<r2<16,
故2<r<4时,直线l有2条;
斜率不存在时,直线l有2条;
所以直线l恰有4条,2<r<4,
故选:D.

点评 本题考查直线与抛物线、圆的位置关系,考查点差法,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.如图,已知PA与圆O相切于点A,半径OB⊥OP,AB交PO于点C.
(1)求证:PA=PC;
(2)若圆O的半径为3,PO=5,求线段AC的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.要得到函数y=sin(4x-$\frac{π}{3}$)的图象,只需要将函数y=sin4x的图象(  )个单位.
A.向左平移$\frac{π}{12}$B.向右平移$\frac{π}{12}$C.向左平移$\frac{π}{3}$D.向右平移$\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.一条光线从点(-2,-3)射出,经y轴反射后与圆(x+3)2+(y-2)2=1相切,则反射光线所在直线的斜率为(  )
A.-$\frac{5}{3}$或-$\frac{3}{5}$B.-$\frac{3}{2}$或-$\frac{2}{3}$C.-$\frac{5}{4}$或-$\frac{4}{5}$D.-$\frac{4}{3}$或-$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.过双曲线x2-$\frac{{y}^{2}}{3}$=1的右焦点且与x轴垂直的直线,交该双曲线的两条渐近线于A、B两点,则|AB|=(  )
A.$\frac{4\sqrt{3}}{3}$B.2$\sqrt{3}$C.6D.4$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知一组数据4,6,5,8,7,6,那么这组数据的平均数为6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设向量$\overrightarrow{{a}_{k}}$=(cos$\frac{kπ}{6}$,sin$\frac{kπ}{6}$+cos$\frac{kπ}{6}$)(k=0,1,2,…,12),则$\sum_{k=0}^{11}$(ak•ak+1)的值为$9\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若集合A={x|-5<x<2},B={x|-3<x<3},则A∩B=(  )
A.{x|-3<x<2}B.{x|-5<x<2}C.{x|-3<x<3}D.{x|-5<x<3}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示.若将运动员成绩由好到差编号为1-35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数是4.

查看答案和解析>>

同步练习册答案