精英家教网 > 高中数学 > 题目详情
17.数列{an}满足a1=1,a2=3,且an+2=|an+1|-an,n∈N*,记{an}的前n项和为Sn,则S100=89.

分析 数列{an}满足a1=1,a2=3,且an+2=|an+1|-an,n∈N*,可得:a3=|a2|-a1=3-1=2,同理可得:a4=-1,a5=-1,a6=2,a7=3,a8=1,a9=-2,a10=1,a11=3,a12=2,….n≥2时,an+9=an,即可得出.

解答 解:数列{an}满足a1=1,a2=3,且an+2=|an+1|-an,n∈N*
∴a3=|a2|-a1=3-1=2,同理可得:a4=-1,a5=-1,a6=2,a7=3,a8=1,a9=-2,a10=1,a11=3,a12=2,….
∴S100=a1+(a2+a3+…+a10)×11
=1+8×11
=89.
故答案为:89.

点评 本题考查了数列递推关系、数列通项公式、数列求和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.过点P(-$\sqrt{3}$,-1)的直线与曲线y=$\sqrt{1-{x^2}}$有公共点,则直线的斜率范围是(  )
A.$[0,\frac{{\sqrt{3}}}{3}]$B.$[0,\sqrt{3}]$C.$[\sqrt{3}-1,\sqrt{3}]$D.$[\frac{{\sqrt{3}-1}}{2},\sqrt{3}]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图

(Ⅰ)由折线图看出,可用线性回归模型拟合y与t的关系,请用相关系数加以说明;
(Ⅱ)建立y关于t的回归方程(系数精确到0.01),预测2017年我国生活垃圾无害化处理量.
参考数据:$\sum_{i=1}^{7}$yi=9.32,$\sum_{i=1}^{7}$tiyi=40.17,$\sqrt{\sum_{i=1}^{7}({y}_{i}-\overline{y})^{2}}$=0.55,$\sqrt{7}$≈2.646.
参考公式:相关系数r=$\frac{\sum_{i=1}^{n}({t}_{i}-\overline{t})({y}_{i}-\overline{y})}{\sqrt{\sum_{i=1}^{n}({t}_{i}-\overline{t})^{2}\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}}$ 回归方程$\widehat{y}$=$\widehat{a}$+$\widehat{b}$t 中斜率和截距的最小二乘估计公式分别为:$\widehat{b}$=$\frac{\sum_{i=1}^{n}({t}_{i}-\overline{t})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({t}_{i}-\overline{t})^{2}}$,$\widehat{a}$=$\widehat{y}$-$\widehat{b}$$\overline{t}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.(Ⅰ)求经过两直线2x-3y-3=0和x+y+2=0的交点且与直线3x+y-1=0垂直的直线方程.
(Ⅱ)关于x,y表示的直线l的方程为mx+y-2(m+1)=0,求坐标原点O到直线l的最大距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知△ABC的三个顶点A(m,n)、B(2,1)、C(-2,3);
(1)求BC边所在直线的方程;
(2)BC边上中线AD的方程为2x-3y+6=0,且S△ABC=7,求点A的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.线性方程组$\left\{\begin{array}{l}{2x-7y+3=0}\\{4x-y=5}\end{array}\right.$的增广矩阵是$[\begin{array}{l}{2}&{-7}&{-3}\\{4}&{-1}&{5}\end{array}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设x轴、y轴正方向上的单位向量分别是$\overrightarrow{i}$、$\overrightarrow{j}$,坐标平面上点列An、Bn(n∈N*)分别满足下列两个条件:①$\overrightarrow{OA_1}$=$\overrightarrow{j}$且$\overrightarrow{A_nA_{n+1}}$=$\overrightarrow{i}$+$\overrightarrow{j}$;②$\overrightarrow{OB_1}$=4$\overrightarrow{i}$且$\overrightarrow{B_nB_{n+1}}$=$\frac{1}{n(n+1)}$×4$\overrightarrow{i}$;
(1)写出$\overrightarrow{OA_2}$及$\overrightarrow{OA_3}$的坐标,并求出$\overrightarrow{OA_n}$的坐标;
(2)若△OAnBn+1的面积是an,求an(n∈N*)的表达式;
(3)对于(2)中的an,是否存在最大的自然数M,对一切n∈N*都有an≥M成立?若存在,求出M,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数f(x)=$\left\{{\begin{array}{l}{(3-a)x-1,x<2}\\{{{log}_a}(x-1)+1,x≥2}\end{array}}$,若f(x)是R上的增函数,则a的取值范围为(  )
A.a<3B.1<a<3C.2<a<3D.2≤a<3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.平面内,F1,F2是两个定点,“动点M满足|$\overrightarrow{MF{\;}_{1}}$|+|$\overrightarrow{MF{\;}_{2}}$|为常数”是“M的轨迹是椭圆”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案