精英家教网 > 高中数学 > 题目详情
若抛物线y2=2px上恒有关于直线x+y-1=0对称的两点A,B,则p的取值范围是(  )
A.(-
2
3
,0)
B.(0,
3
2
C.(0,
2
3
D.(-∞,0)∪(
2
3
,+∞)
设A(x1,y1),B(x2,y2),
因为点A和B在抛物线上,所以有y12=2px1
y22=2px2
①-②得,y12-y22=2p(x1-x2)
整理得
y1-y2
x1-x2
=
2p
y1+y2

因为A,B关于直线x+y-1=0对称,所以kAB=1,即
2p
y1+y2
=1

所以y1+y2=2p.
设AB的中点为M(x0,y0),则y0=
y1+y2
2
=
2p
2
=p

又M在直线x+y-1=0上,所以x0=1-y0=1-p.
则M(1-p,p).
因为M在抛物线内部,所以y02-2px0<0
即p2-2p(1-p)<0,解得0<p<
2
3

所以p的取值范围是(0,
2
3
).
故选C.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若抛物线y2=2px(p>0)的准线通过双曲线
x2
7
-
y2
2
=1
的一个焦点,则p=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若抛物线y2=2px的焦点与椭圆
x2
12
+
y2
3
=1
的右焦点重合,则p的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若抛物线y2=2px(p>0)上有一点M,其横坐标为8,它到焦点的距离为9,
(1)求焦点F的坐标
(2)并求直线MF的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C的焦点为F1(-1,0)、F2(1,0),点P(-1,
2
2
)
在椭圆上.
(1)求椭圆C的方程;
(2)若抛物线y2=2px(p>0)与椭圆C相交于点M、N,当△OMN(O是坐标原点)的面积取得最大值时,求p的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若抛物线y2=2px的焦点与双曲线
x2
16
-
y2
9
=1
的右焦点重合,则p的值为(  )
A、-10
B、5
C、2
7
D、10

查看答案和解析>>

同步练习册答案