精英家教网 > 高中数学 > 题目详情
9.一般地,我们把离心率为$\frac{{\sqrt{5}-1}}{2}$的椭圆称为“黄金椭圆”.对于下列命题:
①椭圆$\frac{x^2}{16}+\frac{y^2}{12}=1$是黄金椭圆;
②若椭圆$\frac{x^2}{12}+\frac{y^2}{m}=1$是黄金椭圆,则$m=6\sqrt{5}-6$;
③在△ABC中,B(-2,0),C(2,0),且点A在以B,C为焦点的黄金椭圆上,则△ABC的周长为$6+2\sqrt{5}$;
④过黄金椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的右焦点F(c,0)作垂直于长轴的垂线,交椭圆于A,B两点,则$|{AB}|=({\sqrt{5}-1})a$;
⑤设F1,F2是黄金椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的两个焦点,则椭圆C上满足∠F1PF2=90°的点P不存在.
其中所有正确命题的序号是③④⑤.(把你认为正确命题的序号都填上).

分析 ①,$a=4,c=2,e=\frac{1}{2}$,即可判断出正误.
②,若焦点在x轴上,则$\frac{{\sqrt{12-m}}}{{\sqrt{12}}}=\frac{{\sqrt{5}-1}}{2}$,解得m.若焦点在y轴上,则$\frac{{\sqrt{m-12}}}{{\sqrt{m}}}=\frac{{\sqrt{5}-1}}{2}$,解得m,即可判断出正误.
③,c=2,$\frac{c}{a}=\frac{{\sqrt{5}-1}}{2}$,即可判断出正误.
④,$|{AB}|=\frac{{2{b^2}}}{a}=\frac{{2({{a^2}-{c^2}})}}{a}=({\sqrt{5}-1})a$,即可判断出正误.
⑤,设|PF1|=m,|PF2|=n,则$\left\{\begin{array}{l}m+n=2a\\ 4{c^2}={m^2}+{n^2}\end{array}\right.,mn=2{a^2}-2{c^2}$,而$\frac{{\sqrt{5}-1}}{2}=\frac{c}{a}$,可得mn,与m+n=2a联立即可判断出正误.

解答 解:对①,$a=4,c=2,e=\frac{1}{2}$,①不正确.
对②,若焦点在x轴上,则$\frac{{\sqrt{12-m}}}{{\sqrt{12}}}=\frac{{\sqrt{5}-1}}{2}$,解得$m=6\sqrt{5}-6$.若焦点在y轴上,则$\frac{{\sqrt{m-12}}}{{\sqrt{m}}}=\frac{{\sqrt{5}-1}}{2}$,解得$m=6\sqrt{5}+6$,②不正确.
对③,c=2,$\frac{c}{a}=\frac{{\sqrt{5}-1}}{2}$,$2a+2c=6+2\sqrt{5}$,③正确.
对④,$|{AB}|=\frac{{2{b^2}}}{a}=\frac{{2({{a^2}-{c^2}})}}{a}=({\sqrt{5}-1})a$,④正确.
对⑤,设|PF1|=m,|PF2|=n,则$\left\{\begin{array}{l}m+n=2a\\ 4{c^2}={m^2}+{n^2}\end{array}\right.,mn=2{a^2}-2{c^2}$,而$\frac{{\sqrt{5}-1}}{2}=\frac{c}{a}$,∴$mn=2{a^2}-2{({\frac{{\sqrt{5}-1}}{2}a})^2}=({\sqrt{5}-1}){a^2}$,与m+n=2a联立无实数解.因此椭圆E上满足∠F1PF2=90°的点P不存在,⑤正确.
故答案为:③④⑤.

点评 本题考查了椭圆的标准方程及其性质,考查学生运算能力、综合运用知识和方法解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.设函数f(x)=ex-ax-1.
(Ⅰ)当a=2时,求曲线y=f(x)在x=0处的切线方程;
(Ⅱ)设函数h(x)=ex(x+1)-ax2-(a+1)x-1,当x≥0时,h(x)≥0,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知△ABC为锐角三角形,且三个内角不全相等,A为最小的内角,则点P(sinA-cosB,3cosA-1)位于第一象限.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在平面直角坐标系xoy中,已知直线C1:$\left\{{\begin{array}{l}{x=t+1}\\{y=7-2t}\end{array}}$(t为参数)与椭圆C2:$\left\{{\begin{array}{l}{x=acosθ}\\{y=3sinθ}\end{array}}$(θ为参数,a>0)的一条准线的交点位于y轴上,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知集合A={x|y=lgx},B={x|x2-2x-3<0},则A∩B=(  )
A.(-1,0)B.(0,3)C.(-∞,0)∪(3,+∞)D.(-1,3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若tan(π+α)=3,则sin(-α)cos(π-α)=(  )
A.$-\frac{3}{10}$B.$\frac{3}{10}$C.$-\frac{1}{10}$D.$\frac{1}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的部分图象如图所示,则下列判断错误的是(  )
A.A=2B.ω=2C.f(0)=1D.φ=$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知椭圆$C:\frac{x^2}{4}+{y^2}=1,A({2,0})$,点P在椭圆C上,且OP⊥PA,其中O为坐标原点,则点P的坐标为(  )
A.$({\frac{2}{3},±\frac{{2\sqrt{2}}}{3}})$B.$({\frac{{2\sqrt{5}}}{3},±\frac{2}{3}})$C.$({-\frac{2}{3},±\frac{{2\sqrt{2}}}{3}})$D.$({-\frac{{2\sqrt{5}}}{3},±\frac{2}{3}})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如图,点A的坐标为(1,0),点C的坐标为(2,4),函数f(x)=x2,四边形ABCD是矩形,则阴影区域的面积等于(  )
A.$\frac{4}{3}$B.$\frac{5}{3}$C.2D.$\frac{7}{3}$

查看答案和解析>>

同步练习册答案