精英家教网 > 高中数学 > 题目详情
8.若函数f(x)=sinx-$\sqrt{3}$cosx,且函数f(x+θ)是偶函数,其中θ∈[0,π],则θ=(  )
A.$\frac{2π}{3}$B.$\frac{π}{3}$C.$\frac{5π}{6}$D.$\frac{π}{6}$

分析 利用辅助角公式化简,利用函数f(x+θ)是偶函数,即可求解θ.

解答 解:函数f(x)=sinx-$\sqrt{3}$cosx=2sin(x$-\frac{π}{3}$)
∵f(x+θ)是偶函数,即f(x+θ)=2sin(x+θ$-\frac{π}{3}$)
∴θ$-\frac{π}{3}$=$\frac{π}{2}+kπ$,(k∈Z)
∵θ∈[0,π],
当k=0时,可得θ=$\frac{5π}{6}$.
故选C.

点评 本题主要考查对三角函数的化简能力和三角函数的图象和性质的运用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.已知log2(9m-2)>0,则m的取值范围是($\frac{1}{3}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知A={x||x+2|≥5},B={x||3-x|<2},则A∪B=(  )
A.RB.{x|x≤-7或x≥3}C.{x|x≤-7或x>1}D.{x|-7≤x<1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若集合$A=\left\{{x\left|{\frac{1}{10}<\frac{1}{x}<\frac{3}{10}\;,\;\;x∈{N}}\right.}\right\}$,集合B={x||x|≤5,x∈Z},则集合A∪B中的元素个数为(  )
A.11B.13C.15D.17

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列四组函数中,表示相等函数的一组是(  )
A.f(x)=$\sqrt{{x}^{2}}$与g(x)=($\sqrt{x}$)2B.f(x)=|x|与g(x)=$\sqrt{{x}^{2}}$
C.g(x)=$\frac{{x}^{2}-1}{x-1}$与g(x)=x+1D.f(x)=$\sqrt{x+1}$•$\sqrt{x-1}$与g(x)=$\sqrt{{x}^{2}-1}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设全集U=N,集合A={x∈N|x≥5},则∁UA=(  )
A.{0,1,2,3,4,5}B.{0,1,2,3,4}C.{1,2,3,4,5}D.{1,2,3,4}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在四棱柱ABCD-A1B1C1D1中,D1D⊥平面ABCD,底面ABCD是正方形,且AB=1,D1D=$\sqrt{2}$
(1)求证:AC⊥平面BB1D1D
(2)求四棱锥D1-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知实数x,y满足约束条件$\left\{\begin{array}{l}{2x-y≤0}\\{x-3y+5≥0}\\{x≥0,y≥0}\end{array}\right.$,则z=2x+y的最大值为(  )
A.0B.$\frac{5}{3}$C.4D.-10

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设D为不等式组$\left\{\begin{array}{l}x+y≥0\\ x-y≤0\\ x+3y≤3\end{array}\right.$表示的平面区域,对于区域D内除原点外的任一点A(x,y),则2x+y的最大值是$\frac{9}{4}$,$\frac{x-y}{{\sqrt{{x^2}+{y^2}}}}$的取值范围是[-$\sqrt{2}$,0].

查看答案和解析>>

同步练习册答案