精英家教网 > 高中数学 > 题目详情
已知函数f(x)=1-
22x+t
(t是常实数).
(1)若函数的定义为R,求y=f(x)的值域;
(2)若存在实数t使得y=f(x)是奇函数,证明y=f(x)的图象在g(x)=2x+1-1图象的下方.
分析:(1)先把定义为R转化为2x+t≠0恒成立,求出t的取值范围,再对t分情况讨论求出对应y=f(x)的值域;
(2)由y=f(x)是奇函数得t=1,再把两个函数作差,整理后利用基本不等式求出差的最值即可证明结论.
解答:解:(1)因为2x+t≠0恒成立,所以t≥0,(2分)
当t=0时,y=f(x)的值域为(-∞,1);(4分)
当t>0时,由y=1-
2
2x+t
得,2x=
2-t+ty
1-y
>0

因而
y-(1-
2
t
)
y-1
<0

即y=f(x)的值域为(1-
2
t
,1)
.(6分)
(2)由y=f(x)是奇函数得t=1,所以f(x)=1-
1
2x+1
(8分)
f(x)-g(x)=1-
2
2x+1
-(2•2x-1)
f(x)-g(x)=4-[
2
2x+1
+2(2x+1)]≤0
(11分)
当“=”成立时,必有
2
2x+1
=2(2x+1)
,即2x=0,此式显然不成立.(13分)
所以对任意实数x都有f(x)<g(x)
即y=f(x)的图象在g(x)=2x+1-1图象的下方.(14分)
点评:本题主要考查函数恒成立问题以及函数奇偶性的应用和函数图象间的关系的转化,是对函数知识的综合考查,属于中档题目.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)、已知函数f(x)=
1+
2
cos(2x-
π
4
)
sin(x+
π
2
)
.若角α在第一象限且cosα=
3
5
,求f(α)

(2)函数f(x)=2cos2x-2
3
sinxcosx
的图象按向量
m
=(
π
6
,-1)
平移后,得到一个函数g(x)的图象,求g(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(1-
a
x
)ex
,若同时满足条件:
①?x0∈(0,+∞),x0为f(x)的一个极大值点;
②?x∈(8,+∞),f(x)>0.
则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+lnx
x

(1)如果a>0,函数在区间(a,a+
1
2
)
上存在极值,求实数a的取值范围;
(2)当x≥1时,不等式f(x)≥
k
x+1
恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+
1
x
,(x>1)
x2+1,(-1≤x≤1)
2x+3,(x<-1)

(1)求f(
1
2
-1
)
与f(f(1))的值;
(2)若f(a)=
3
2
,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在D上的函数f(x)如果满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.已知函数f(x)=
1-m•2x1+m•2x

(1)m=1时,求函数f(x)在(-∞,0)上的值域,并判断f(x)在(-∞,0)上是否为有界函数,请说明理由;
(2)若函数f(x)在[0,1]上是以3为上界的有界函数,求m的取值范围.

查看答案和解析>>

同步练习册答案