精英家教网 > 高中数学 > 题目详情
长方体的各顶点都在球的球面上,其中两点的球面距离记为两点的球面距离记为,则的值为       

正方体的外接球中的球面距离问题,特殊化注意球心为长方体的中心,可求得体对角线
,球心OAB构成的三角形为等腰三角形且
,球心OAD1构成的三角形为等腰三角形且
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

右图为一简单组合体,其底面ABCD为正方形,平面
,且="2" .
(1)答题卡指定的方框内已给出了该几何体的俯视图,请在方框
内画出该几何体的正(主)视图和侧(左)视图;
(2)求四棱锥B-CEPD的体积;
(3)求证:平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在直三棱柱中,ACB=90°, 的中点,的中点。
(1)求证:MN∥平面 ;
(2)求点到平面BMC的距离;
(3)求二面角­1的大小。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)如图,已知平行四边形和矩形所在的平面互相垂直,是线段的中点.

(1)求证:;(2)求二面角的大小;
(3)设点为一动点,若点出发,沿棱按照
的路线运动到点,求这一过程中形成的三棱锥的体积的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分
如图,已知正三棱柱的底面边长是、E是、BC的中点,AE=DE

(1)求此正三棱柱的侧棱长;
(2)求正三棱柱表面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分14分,第(1)小题6分,第(2)小题8分)
四棱锥P-ABCD中,PD⊥平面ABCD,PA与平面ABCD所成的角为60,在四边形ABCD中,∠ADC=∠DAB=90,AB=4,CD=1,AD=2.

(1)求四棱锥P-ABCD的体积;
(2)求异面直线PA与BC所成的角.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图三棱柱中,侧棱与底面成角,⊥底面⊥侧面,且则顶点到棱的距离是__________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分,(Ⅰ)小问6分,(Ⅱ)小问6分.)
如图(20)图,为平面,AB=5,A,B在棱l上的射影分别为A′,B′,AA′=3,BB′=2.若二面角的大小为,求:
(Ⅰ)点B到平面的距离;
(Ⅱ)异面直线lAB所成的角(用反三角函数表示).

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是三个不重合的平面,是不重合的直线,给出下列命题:
①若;②若;③若
;④若内的射影互相垂直,则,其中错误命题有      (    )
A.1个B.2个C.3个D.4个

查看答案和解析>>

同步练习册答案