精英家教网 > 高中数学 > 题目详情
(本小题满分13分)如图,已知平行四边形和矩形所在的平面互相垂直,是线段的中点.

(1)求证:;(2)求二面角的大小;
(3)设点为一动点,若点出发,沿棱按照
的路线运动到点,求这一过程中形成的三棱锥的体积的最小值.
(Ⅰ)见解析   (Ⅱ)   (Ⅲ)
法一:(1)易求,从而,由三垂线定理知:.
(2)法一:易求由勾股定理知
设点在面内的射影为,过,连结
为二面角的平面角.
中由面积法易求,由体积法求得点到面的距离是
所以,所以求二面角的大小为.
法二:易求由勾股定理知,过,又过,连结.则易证为二面角的平面角
.在中由面积法易求,从而于是
所以,在中由余弦定理求得.再在中由余弦定理求得.最后在中由余弦定理求得,所以求二面角的大小为.………… 8分
(3)设AC与BD交于O,则OF//CM,所以CM//平面FBD,当P点在M或C时,三棱锥P—BFD的体积的最小.. ……………… 13分
解法二:空间向量解法,略.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

图4,四棱锥P—ABCD中,ABCD为矩形,△PAD为等腰直角三角形,

∠APD=90°,面PAD⊥面ABCD,且AB=1,AD=2,E、F分别为PC和BD的中点.
(1)证明:EF∥面PAD;
(2)证明:面PDC⊥面PAD.
 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知一四棱锥P-ABCD的三视图如下,E是侧棱PC上的动点。
(Ⅰ)求四棱锥P-ABCD的体积;
(Ⅱ)是否不论点E在何位置,都有BD⊥AE?证明你的结论;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,某建筑物的基本单元可近似地按以下方法构作:先在地平面内作菱形ABCD,边长为1,∠BAD=60°,再在的上方,分别以△与△为底面安装上相同的正棱锥P-ABD与Q-CBD,∠APB=90°.
(Ⅰ)求证:PQ⊥BD;
(Ⅱ)求二面角P-BD-Q的余弦值;
(Ⅲ)求点P到平面QBD的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在棱长为的正方体中,为棱的中点.
(Ⅰ)求证:平面;   (Ⅱ)求与平面所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

长方体的各顶点都在球的球面上,其中两点的球面距离记为两点的球面距离记为,则的值为       

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在直四棱柱中,底面ABCD为等腰梯形,AB∥CD,AB="4,BC=CD=2," AA="2, " E、E、F分别是棱AD、AA、AB的中点。               
(Ⅰ)证明:直线∥平面;          
(Ⅱ)求二面角的余弦值

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知矩形ABCD,M,N分别是AD,BC的中点,且AM=AB,将矩形沿MN折成直二面角,若P点是线段DN上一动点,求P到BM距离的最小值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

等边ABC的A∈平面α,B、C到面α的距离分别为2a、a,且AB=BC=AC=b.
(1)求面ABC与α所成二面角的大小;
(2)若B、C到α的距离分别为3a、a呢?

查看答案和解析>>

同步练习册答案