精英家教网 > 高中数学 > 题目详情
如图,在直四棱柱中,底面ABCD为等腰梯形,AB∥CD,AB="4,BC=CD=2," AA="2, " E、E、F分别是棱AD、AA、AB的中点。               
(Ⅰ)证明:直线∥平面;          
(Ⅱ)求二面角的余弦值

(Ⅱ)

解法一:(1)在直四棱柱ABCD-ABCD中,取A1B1的中点F1
连接A1D,C1F1,CF1,因为AB="4," CD=2,且AB//CD,
所以CDA1F1,A1F1CD为平行四边形,所以CF1//A1D,
又因为E、E分别是棱AD、AA的中点,所以EE1//A1D,
所以CF1//EE1,又因为平面FCC平面FCC
所以直线EE//平面FCC.······6分
(2)因为AB="4," BC="CD=2," 、F是棱AB的中点,所以BF=BC=CF,△BCF为正三角形,取CF的中点O,则OB⊥CF,又因为直四棱柱ABCD-ABCD中,CC1⊥平面ABCD,所以CC1⊥BO,所以OB⊥平面CC1F,过O在平面CC1F内作OP⊥C1F,垂足为P,连接BP,则∠OPB为二面角B-FC-C的一个平面角, 在△BCF为正三角形中,,在Rt△CC1F中, △OPF∽△CC1F,∵,    ··········11分

在Rt△OPF中,,,所以
二面角B-FC-C的余弦值为.·······14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

在直三棱柱中,ACB=90°, 的中点,的中点。
(1)求证:MN∥平面 ;
(2)求点到平面BMC的距离;
(3)求二面角­1的大小。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知ABCD是矩形,EF分别是线段ABBC的中点,ABCD.  (1)证明:PFFD
(2)在PA上找一点G,使得EG∥平面PFD.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图:已知正方体ABCD—A1B1C1D1,过BD1的平面分别交棱AA1和棱CC1于E、F两点。(1)求证:A1E=CF; (2)若E、F分别是棱AA1和棱CC1的中点,求证:平面EBFD1⊥平面BB1D1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)如图,已知平行四边形和矩形所在的平面互相垂直,是线段的中点.

(1)求证:;(2)求二面角的大小;
(3)设点为一动点,若点出发,沿棱按照
的路线运动到点,求这一过程中形成的三棱锥的体积的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,梯形ABCD中,CD//ABEAB的中点,将△ADE沿DE折起,使点A折到点P的位置,且二面角的大小为1200
(I)求证:
(II)求直线PD与平面BCDE所成角的大小;
(III)求点D到平面PBC的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图三棱柱中,侧棱与底面成角,⊥底面⊥侧面,且则顶点到棱的距离是__________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在四面体ABCD中,AB=AD=,BC=CD=3,AC=,BD=2.
(1)平面ABD与平面BCD是否垂直?证明你的结论;(2)求二面角A-CD-B的正切值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知上的点.
(1)当
(2)当二面角的大小为的值.

查看答案和解析>>

同步练习册答案