精英家教网 > 高中数学 > 题目详情
等边ABC的A∈平面α,B、C到面α的距离分别为2a、a,且AB=BC=AC=b.
(1)求面ABC与α所成二面角的大小;
(2)若B、C到α的距离分别为3a、a呢?

(1)∠BAG=arcsin(2)arcsin
(1)延长BD交α于D  B、C在α上的射影为G、H.则

G、H、D共线  BG="2GH " ∴BC=CD
∴∠BAD=90°,GA⊥AD,∠BAG为所求.
sin∠BAC= ∠BAG=arcsin
(2) =3
∴BC="2CD " CD=
AD2=AC2+CD2+AC·CD=         ∴AD=b
C到AD的距离为
设所成角为α,则
sinα=
α=arcsin
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)如图,已知平行四边形和矩形所在的平面互相垂直,是线段的中点.

(1)求证:;(2)求二面角的大小;
(3)设点为一动点,若点出发,沿棱按照
的路线运动到点,求这一过程中形成的三棱锥的体积的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在正三棱锥中,
D是AC的中点,.
(1)求证:(5分)
(2)(理科)求二面角的大小。(7分)
(文科)求二面角平面角的大小。(7分)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,梯形ABCD中,CD//ABEAB的中点,将△ADE沿DE折起,使点A折到点P的位置,且二面角的大小为1200
(I)求证:
(II)求直线PD与平面BCDE所成角的大小;
(III)求点D到平面PBC的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知是直角梯形,平面
(1) 证明:
(2) 在上是否存在一点,使得∥平面?若存在,找出点,并证明:∥平面;若不存在,请说明理由;
(3)若,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,正三棱柱.
(1)求证:平面
(2)求证:
(3)若.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,在三棱锥P-ABC中,AB⊥BC,AB=BC=PA=a,点O、D分别是AC、PC的中点,OP⊥底面ABC。

(1)求三棱锥P-ABC的体积;
(2)求异面直线PA与BD所成角余弦值的大小。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

正方形ABCD边长为2,EF分别是ABCD的中点,将正方形沿EF折成直二面角(如图),M为矩形AEFD内一点,如果∠MBE=∠MBCMB和平面BCF所成角的正切值为,那么点M到直线EF的距离为(    )
A.B.1C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

长方体的对角线长是4,有一条棱长为1,那么该长方体的最大体积为
A.B.C.D.

查看答案和解析>>

同步练习册答案