(本小题满分12分
如图,在四棱锥
中,底面
四边长为1的菱形,
,
,
,
为
的中点,
为
的中点
(Ⅰ)证明:直线![]()
;
(Ⅱ)求异面直线AB与MD所成角的大小;
(Ⅲ)求点B到平面OCD的距离。
(Ⅰ)证明:见解析。
(Ⅱ)![]()
(Ⅲ)![]()
方法一(综合法)
(1)取OB中点E,连接ME,NE
![]()
又![]()
![]()
(2)![]()
为异面直线
与
所成的角(或其补角)
作
连接![]()
![]()
![]()
,![]()
所以
与
所成角的大小为![]()
(3)
点A和点B到平面OCD的距离相等,连接OP,过点A作
于点Q,![]()
又
,线段AQ的长就是点A到平面OCD的距离
,![]()
,所以点B到平面OCD的距离为![]()
方法二(向量法)
作
于点P,如图,分别以AB,AP,AO所在直线为
轴建立坐标系
,
(1)![]()
设平面OCD的法向量为
,则![]()
即 ![]()
取
,解得![]()
![]()
![]()
(2)设
与
所成的角为
,![]()
,
与
所成角的大小为![]()
(3)设点B到平面OCD的距离为
,则
为
在向量
上的投影的绝对值,
由
, 得
.所以点B到平面OCD的距离为![]()
科目:高中数学 来源: 题型:
| ON |
| ON |
| 5 |
| OM |
| OT |
| M1M |
| N1N |
| OP |
| OA |
查看答案和解析>>
科目:高中数学 来源: 题型:
(2009湖南卷文)(本小题满分12分)
为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的
、
、
.现有3名工人独立地从中任选一个项目参与建设.求:
(I)他们选择的项目所属类别互不相同的概率; w.w.w.k.s.5.u.c.o.m
![]()
(II)至少有1人选择的项目属于民生工程的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分12分)
某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,
(注:利润与投资单位是万元)
(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com