精英家教网 > 高中数学 > 题目详情
已知抛物线C:y2=2px(p>0)过点P(1,-2).
(Ⅰ)求抛物线C的方程,并求其准线方程;
(Ⅱ)过焦点F且斜率为2的直线l与抛物线交于A,B两点,求弦长|AB|
考点:抛物线的简单性质
专题:圆锥曲线的定义、性质与方程
分析:(Ⅰ)把定点坐标代入抛物线方程,求得p,则抛物线方程可求;
(Ⅱ)求出抛物线的焦点坐标,由直线方程的点斜式写出直线l的方程,和抛物线方程联立后利用弦长公式得答案.
解答: 解:(Ⅰ)根据抛物线C:y2=2px(p>0)过点P(1,-2),可得4=2p,解得p=2.
从而抛物线的方程为y2=4x,准线方程为x=-1;
(Ⅱ)抛物线焦点坐标为F(1,0),
∴直线l:y=2x-2.
设点A(x1,y1),B(x2,y2),
联立
y=2x-2
y2=4x
,得:4x2-12x+4=0,即x2-3x+1=0.
则由韦达定理有:x1+x2=3,x1x2=1.
则弦长|AB|=
5
|x1-x2|=
5
(x1+x2)2-4x1x2
=
5
9-4
=5
点评:本题考查了抛物线的标准方程及其几何性质,考查了直线与抛物线的位置关系,训练了点到直线的距离公式的应用,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知△ABC为边长3的正三角形,则
AB
BC
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sin(
π
5
-x)=
3
5
,则cos(
7
10
π-x)=(  )
A、
3
5
B、
4
5
C、-
3
5
D、-
4
5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(cosα,sinα),
b
=(cosβ,sinβ),
c
=(1,7sinα),且0<β<α<
π
2
.若
a
b
=
13
14
a
c

(1)求tanβ的值;
(2)求cos(2α-
1
2
β)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
sinx+cosx
ex

(1)判断f(x)在(0,2)上的单调性;
(2)求f(x)的极值点.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(2+sinx,1),
b
=(2,-1),
c
=(sinx-3,1),
d
=(1,k),(x∈R,k∈R).
(Ⅰ)若
a
与(
b
+
c
)共线,求sinx的值.
(Ⅱ)若k的值使(
a
+
d
)⊥(
b
+
c
),试求k的取值范围.
(Ⅲ)若x∈[0,
π
2
],将函数y=
a
b
的图象纵坐标不变横坐标缩短为原来的
1
2
后,再向左平移
π
8
个单位得到函数f(x)的图象,试求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

平面内与两定点A(-a,0),B(a,0)(a>0)的连线的斜率之积等于-
1
a2
的点P的轨迹为曲线C.
(Ⅰ)求曲线C的方程;
(Ⅱ)点S是直线x=a上的点,且S在x轴上方,连结AS交曲线C于点T,点M是以SB为直径的圆与线段BT的交点,试问:是否存在实数a,使得O、M、S三点共线?若存在,求出a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的中心在原点,焦点在x轴上,椭圆的两个焦点到椭圆上的点的最大距离为3,最小距离为1,则椭圆的标准方程(  )
A、
x2
4
+
y2
3
=1
B、
x2
3
+y2=1
C、x2+
y2
3
=1
D、
x2
9
+
y2
4
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=2cos(2x+
π
6
),x∈(-
π
6
π
4
)的值域是
 

查看答案和解析>>

同步练习册答案