【题目】已知椭圆
:
的左、右焦点为
,
,点
在椭圆
上,且
面积的最大值为
,周长为6.
(1)求椭圆
的方程,并求椭圆
的离心率;
(2)已知直线
:
与椭圆
交于不同的两点
,若在
轴上存在点
,使得
与
中点的连线与直线
垂直,求实数
的取值范围
科目:高中数学 来源: 题型:
【题目】某体育公司对最近6个月内的市场占有率进行了统计,结果如表:
![]()
(1)可用线性回归模型拟合
与
之间的关系吗?如果能,请求出
关于
的线性回归方程,如果不能,请说明理由;
(2)公司决定再采购
,
两款车扩大市场,
,
两款车各100辆的资料如表:
![]()
平均每辆车每年可为公司带来收入500元,不考虑采购成本之外的其他成本,假设每辆车的使用寿命都是整数年,用每辆车使用寿命的频率作为概率,以每辆车产生利润的期望值作为决策依据,应选择采购哪款车型?
参考数据:
,
,
,
.
参考公式:相关系数
;
回归直线方程
,其中
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知
、
两个城镇相距20公里,设
是
中点,在
的中垂线上有一高铁站
,
的距离为10公里.为方便居民出行,在线段
上任取一点
(点
与
、
不重合)建设交通枢纽,从高铁站铺设快速路到
处,再铺设快速路分别到
、
两处.因地质条件等各种因素,其中快速路
造价为1.5百万元/公里,快速路
造价为1百万元/公里,快速路
造价为2百万元/公里,设
,总造价为
(单位:百万元).
![]()
(1)求
关于
的函数关系式,并指出函数的定义域;
(2)求总造价的最小值,并求出此时
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,椭圆
的离心率为
,顶点为
,
,
,
,且
.
![]()
(1)求椭圆
的方程;
(2)若
是椭圆
上除顶点外的任意一点,直线
交
轴于点
,直线
交
于点
.设
的斜率为
,
的斜率为
,试问
是否为定值?并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】党的十八提出:倡导“富强、民主、文明、和谐、自由、平等、公正、法治、爱国、敬业、诚信、友善”社会主义核心价值观.现将这十二个词依次写在六张规格相同的卡片的正反面(无区分),(如“富强、民主”写在同一张卡片的两面),从中任意抽取1张卡片,则写有“爱国”“诚信”两词中的一个的概率是( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】假设关于某设备的使用年限
(年)和所支出的年平均维修费用
(万元)(即维修费用之和除以使用年限),有如下的统计资料:
使用年限 | 2 | 3 | 4 | 5 | 6 |
维修费用 | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
(1)画出散点图;
(2)求
关于
的线性回归方程;
(3)估计使用年限为10年时所支出的年平均维修费用是多少?
参考公式: ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知四棱台
的上下底面分别是边长为2和4的正方形,
= 4且
⊥底面
,点
为
的中点.
![]()
(Ⅰ)求证:
面
;
(Ⅱ)在
边上找一点
,使
∥面
,
并求三棱锥
的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系
中,已知曲线
的参数方程为
(
为参数),以原点
为极点,
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(1)求曲线
的普通方程与
的直角坐标方程;
(2)判断曲线
是否相交,若相交,求出相交弦长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com