精英家教网 > 高中数学 > 题目详情
设A(1,0)、B(-1,0),若kMA·kMB=-1,求M点的轨迹方程.

解:设M(x,y),由kMA·kMB=-1,

·=-1(x≠±1),

化简得x2+y2=1(x≠±1),

∴M点的轨迹方程为x2+y2=1(x≠±1).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设a>0,b>0,c>0,下列不等关系不恒成立的是(  )
A、c+
1
c
≥2
B、|a-b|≤|a-c|+|b-c|
C、若a+4b=1,则
1
a
+
1
b
>8
D、ax2+bx-c≥0(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)在定义域R内可导,f(1+x)=f(1-x),且当x∈(-∞,1)时,(x-1)f′(x)>0设a=f(0),b=f(
3
2
),c=f(3)
,则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设a>0,b>0,且a+b=1,求证:(a+
1
a
)2+(b+
1
b
)2
25
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•湖北)设a>0,b>0,已知函数f(x)=
ax+b
x+1

(Ⅰ)当a≠b时,讨论函数f(x)的单调性;
(Ⅱ)当x>0时,称f(x)为a、b关于x的加权平均数.
(i)判断f(1),f(
b
a
),f(
b
a
)是否成等比数列,并证明f(
b
a
)≤f(
b
a
);
(ii)a、b的几何平均数记为G.称
2ab
a+b
为a、b的调和平均数,记为H.若H≤f(x)≤G,求x的取值范围.

查看答案和解析>>

同步练习册答案