精英家教网 > 高中数学 > 题目详情
已知二次函数f(x)对任意实数x满足f(x+2)=f(-x+2),又f(0)=3,f(2)=1.
(1)求函数f(x)的解析式;
(2)若f(x)在[0,m]上的最大值为3,最小值为1,求m的取值范围.
分析:(1)先由题意设f(x)=ax2+bx+c,再结合f(2+x)=f(2-x)得到x=2是对称轴,从而建立a,b,c的关系式,即可求得a,b,c.最后写出函数f(x)的解析式即可;
(2)由于对称轴为x=2,且f(2)=1,得到f(0)=f(4)=3,从而有:2≤m≤4,即m的取值范围为[2,4].
解答:解:(1)设f(x)=ax2+bx+c
∵f(2+x)=f(2-x)
∴x=2是对称轴
-
b
2a
=2
f(0)=c=3f(2)=4a+2b+c=1
a=
1
2
    b=-2

f(x)=
1
2
x2-2x+3

(2)∵对称轴为x=2,且f(2)=1
∴f(0)=f(4)=3,为了使得f(x)在[0,m]上的最大值为3,最小值为1,
∴2≤m≤4
∴m的取值范围为[2,4].
点评:本小题主要考查二次函数的性质、二次函数在闭区间上的最值等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2+2(m-2)x+m-m2
(I)若函数的图象经过原点,且满足f(2)=0,求实数m的值.
(Ⅱ)若函数在区间[2,+∞)上为增函数,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+c(a≠0)的图象过点(0,1),且与x轴有唯一的交点(-1,0).
(Ⅰ)求f(x)的表达式;
(Ⅱ)设函数F(x)=f(x)-kx,x∈[-2,2],记此函数的最小值为g(k),求g(k)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2-16x+q+3.
(1)若函数在区间[-1,1]上存在零点,求实数q的取值范围;
(2)若记区间[a,b]的长度为b-a.问:是否存在常数t(t≥0),当x∈[t,10]时,f(x)的值域为区间D,且D的长度为12-t?请对你所得的结论给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•广州一模)已知二次函数f(x)=x2+ax+m+1,关于x的不等式f(x)<(2m-1)x+1-m2的解集为(m,m+1),其中m为非零常数.设g(x)=
f(x)x-1

(1)求a的值;
(2)k(k∈R)如何取值时,函数φ(x)=g(x)-kln(x-1)存在极值点,并求出极值点;
(3)若m=1,且x>0,求证:[g(x+1)]n-g(xn+1)≥2n-2(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知二次函数f(x)的图象与x轴的两交点为(2,0),(5,0),且f(0)=10,求f(x)的解析式.
(2)已知二次函数f(x)的图象的顶点是(-1,2),且经过原点,求f(x)的解析式.

查看答案和解析>>

同步练习册答案