精英家教网 > 高中数学 > 题目详情
20.在△ABC中,已知M为线段AB的中点,顶点A,B的坐标分别为(4,-1),(2,5).
(Ⅰ)求线段AB的垂直平分线方程;
(Ⅱ)若顶点C的坐标为(6,2),求△ABC重心的坐标.

分析 (Ⅰ)求出直线AB的斜率,点到其中垂线的斜率,求出直线方程看;(Ⅱ)设出△ABC的重心,结合公式求出重心的坐标即可.

解答 解:(Ⅰ)∵AB的中点是M(3,2),
直线AB的斜率是-3,
线段AB中垂线的斜率是$\frac{1}{3}$,
故线段AB的垂直平分线方程是y-2=$\frac{1}{3}$(x-3),
即x-3y+3=0;
(Ⅱ)设△ABC的重心为G(x,y),
由重心坐标公式可得$\left\{\begin{array}{l}{x=\frac{4+2+6}{3}=4}\\{y=\frac{-1+5+2}{3}=2}\end{array}\right.$,
故重心坐标是G(4,2).

点评 本题考查了求直线方程问题,考查三角形的重心,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.已知x,y是正实数,则$\frac{2y-x}{x}$+$\frac{2x-y}{3y}$的最小值为$\frac{4\sqrt{3}-4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.4名同学报名参加两个课外活动小组,每名同学限报其中的一个小组,则不同的标报名方法共有(  )
A.4种B.16种C.64种D.256种

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.水培植物需要一种植物专用营养液.已知每投放a(1≤a≤4且a∈R)个单位的营养液,它在水中释放的浓度y(克/升)随着时间x(天)变化的函数关系式近似为y=af(x),其中f(x)=$\left\{\begin{array}{l}{\frac{4+x}{4-x}(0≤x≤2)}\\{\;}\\{5-x(2<x≤5)}\end{array}\right.$,若多次投放,则某一时刻水中的营养液浓度为每次投放的营养液在相应时刻所释放的浓度之和,根据经验,当水中营养液的浓度不低于4(克/升)时,它才能有效.
(1)若只投放一次4个单位的营养液,则有效时间可能达几天?
(2)若先投放2个单位的营养液,3天后投放b个单位的营养液.要使接下来的2天中,营养液能够持续有效,试求b的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若不等式|x+1|+|$\frac{1}{x}$-1|≤a有解,则实数a的取值范围是(  )
A.a≥2B.a<2C.a≥1D.a<1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某班A,B,C,D,E5个同学先坐好,然后玩坐座位的游戏,当坐回自己原来的位置上称为“坐对”,否则称作“坐错“.
(1)求只有两个人“坐对”的概率;
(2)若每“坐对”一个人得1分,“坐错“得-1分,设5人得分和的绝对值为X,求X的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在△ABC中,内角A,B,C的对边分别为a,b,c,C=$\frac{π}{3}$,若$\overrightarrow{m}$=(c-$\sqrt{6}$,a-b),$\overrightarrow{n}$=(a-b,c+$\sqrt{6}$),且$\overrightarrow{m}$∥$\overrightarrow{n}$,则△ABC的面积为(  )
A.3B.$\frac{9\sqrt{3}}{2}$C.$\frac{3\sqrt{3}}{2}$D.3$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知f(x)=25-x,g(x)=x+t,设h(x)=max{f(x),g(x)}.若当x∈N+时,恒有h(5)≤h(x),则实数t的取值范围是[-5,-3].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.一次数学考试后,某老师从自己所带的两个班级中各抽取6人,记录他们的考试成绩,得到如图所示的茎叶图.已知甲班6名同学成绩的平均数为82,乙班6名同学成绩的中位数为77,则x-y=(  )
A.3B.-3C.4D.-4

查看答案和解析>>

同步练习册答案