精英家教网 > 高中数学 > 题目详情
已知函数f(x)为奇函数,在定义域(-2,2)上单调递增,且有f(2+a)+f(1-2a)>0,求实数a的取值范围.
考点:函数单调性的性质
专题:函数的性质及应用
分析:由题意可得,f(2+a)>-f(2a-1),再由
-2<2+a<2
-2<2a-1<2
2+a>2a-1
,求得实数a的取值范围.
解答: 解:由题意可得,f(2+a)>-f(1-2a)=f(2a-1),∴
-2<2+a<2
-2<2a-1<2
2+a>2a-1

-4<a<0
-
1
2
<a<
3
2
a<3
,求得-
1
2
<a<0,即实数a的取值范围为(-
1
2
,0).
点评:本题主要考查函数的定义域、函数的单调性和奇偶性的应用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

求函数f(x)=x2-2tx+3在区间[2,4]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

在正方体ABCD-A1B1C1D1中,E是BB1的中点,O是底面正方形ABCD的中心.求证:OE⊥平面ACD1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数a,b,c,d成等比数列,且对函数y=ln(x+2)-x,当x=b时取到极大值c,则ad=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx且f(2)=0,方程f(x)-1=0有两个相等的实数根.
(1)求函数f(x)的解析式;
(2)用定义证明f(x)在[1,+∞)上是减函数;
(3)当x∈[-
1
2
3
2
]时,利用图象求f(x)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)的定义域为A,若x1,x2∈A,且f(x1)=f(x2)时,总有x1=x2,则称f(x)为单函数.例如:函数f(x)=2x+1(x∈R)是单函数.给出下列命题:
①函数f(x)=x2(x∈R)是单函数;
②指数函数f(x)=2x(x∈R)是单函数;
③若f(x)为单函数,x1,x2∈A且x1≠x2,则f(x1)≠f(x2);
④在定义域上具有单调性的函数一定是单函数,
其中正确命题的个数是(  )
A、3B、2C、1D、0

查看答案和解析>>

科目:高中数学 来源: 题型:

作出y=
1
x
+2的函数图象,并求出其单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,直线y=m与抛物线y2=8x交与点A,与圆(x-2)2+y2=16的实线部分交于点B,F为抛物线的焦点,则△ABF的周长的取值范围是(  )
A、(6,8)
B、(4,6)
C、(8,12)
D、(8,10)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+2ax,x∈[-5,5].
(1)当a=-1时,求函数f(x)的最大值和最小值;
(2)求实数a的取值范围,使f(x)在区间[-5,5]上是减函数;
(3)求函数f(x)的最小值g(a),并求g(a)的最大值.

查看答案和解析>>

同步练习册答案