精英家教网 > 高中数学 > 题目详情
如图所示,直线y=m与抛物线y2=8x交与点A,与圆(x-2)2+y2=16的实线部分交于点B,F为抛物线的焦点,则△ABF的周长的取值范围是(  )
A、(6,8)
B、(4,6)
C、(8,12)
D、(8,10)
考点:抛物线的简单性质
专题:计算题,直线与圆,圆锥曲线的定义、性质与方程
分析:由抛物线定义可得|AF|=xA+2,由已知条件推导出△FAB的周长=6+xB,由此能求出三角形ABF的周长的取值范围.
解答: 解:抛物线的准线l:x=-2,焦点F(2,0),
由抛物线定义可得|AF|=xA+2,
∴△FAB的周长=|AF|+|AB|+|BF|=xA+2+(xB-xA)+4=6+xB
由抛物线y2=8x及圆(x-2)2+y2=16,
得交点的横坐标为2,
∴xB∈(2,6)
∴6+xB∈(8,12)
∴三角形ABF的周长的取值范围是(8,12).
故选:C.
点评:本题考查三角形的周长的取值范围的求法,是中档题,解题时要熟练掌握抛物线的定义和简单性质.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xoy中,M(x,y)为不等式组
2x-y-2≥0
x+2y-1≥0
3x+y-8≤0
所表示的区域上一动点,则z=
y
x
的最小值为(  )
A、2
B、1
C、-
1
2
D、-
1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为奇函数,在定义域(-2,2)上单调递增,且有f(2+a)+f(1-2a)>0,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

双曲线
x2
2
-y2=-1的离心率为(  )
A、
3
3
B、
6
2
C、
3
D、
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC的内角A,B,C的对边分别为a,b,c,若a=10,B=45°,b=7,则△ABC(  )
A、无解B、仅有一解
C、仅有两解D、无法判断

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=(2
3
sin
x
4
,2),
n
=(cos
x
4
,cos2
x
4
).函数f(x)=
m
n

(Ⅰ)若f(x)=
1
2
,求cos(x+
π
3
)的值;
(Ⅱ)在△ABC中,角A、B、C的对边分别是a、b、c,且满足(2a-c)cosB=bcosC,求f(A)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

a1=4,an+1=2an+2n+1,令bn=
an
2n

(1)求证{bn}是等差数列;
(2)求{an}的通项公式,并其求的前项和Sn的通项.

查看答案和解析>>

科目:高中数学 来源: 题型:

设等比数列{an}的前n项和Sn=2•3n-2+a,等差数列{bn}的前n项和Tn=2n2-n+b-1,则a+b=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

把正整数按上小下大、左小右大的原则排成如图三角形数表(每行比上一行多一个数):设ai,j(i、j∈N*)是位于这个三角形数表中从上往下数第i行、从左往右数第j个数,如a4,2=8,则a51,25
 

查看答案和解析>>

同步练习册答案