精英家教网 > 高中数学 > 题目详情
5.△ABC中,A=60°,AB=3,AC=2,D是AC边的中点,点E在AB边上,且AE=$\frac{1}{2}$EB,BD与CE交于点M,N是BC的中点,则$\overrightarrow{AM}$•$\overrightarrow{AN}$=$\frac{13}{5}$.

分析 设$\overrightarrow{AM}$=x1$\overrightarrow{AB}$+x2$\overrightarrow{AC}$,利用向量共线的性质可求$\overrightarrow{AM}$=$\frac{1}{5}$$\overrightarrow{AB}$+$\frac{2}{5}$$\overrightarrow{AC}$,而根据题意可得$\overrightarrow{AN}$=$\frac{1}{2}$$\overrightarrow{AC}$+$\frac{1}{2}$$\overrightarrow{AB}$,然后进行数量积的运算便可求出$\overrightarrow{AM}$•$\overrightarrow{AN}$的值.

解答 解:设$\overrightarrow{AM}$=x1$\overrightarrow{AB}$+x2$\overrightarrow{AC}$,$\overrightarrow{AE}$=$\frac{1}{3}$$\overrightarrow{AB}$,$\overrightarrow{AD}$=$\frac{1}{2}$$\overrightarrow{AC}$,
∵B,M,D三点共线,E,M,C三点共线,
∴$\overrightarrow{AM}$=λ$\overrightarrow{AB}$+(1-λ)$\overrightarrow{AD}$=λ$\overrightarrow{AB}$+$\frac{1}{2}$(1-λ)$\overrightarrow{AC}$,
$\overrightarrow{AM}$=μ$\overrightarrow{AE}$+(1-μ)$\overrightarrow{AC}$=$\frac{1}{3}μ$$\overrightarrow{AB}$+(1-μ)$\overrightarrow{AC}$,
∴$\left\{\begin{array}{l}{λ=\frac{1}{3}μ}\\{\frac{1}{2}(1-λ)=1-μ}\end{array}\right.$,解得$\left\{\begin{array}{l}{λ=\frac{1}{5}}\\{μ=\frac{3}{5}}\end{array}\right.$,
∴$\overrightarrow{AM}$=$\frac{1}{5}$$\overrightarrow{AB}$+$\frac{2}{5}$$\overrightarrow{AC}$,
∴$\overrightarrow{AM}•\overrightarrow{AN}$=($\frac{1}{5}$$\overrightarrow{AB}$+$\frac{2}{5}$$\overrightarrow{AC}$)($\frac{1}{2}$$\overrightarrow{AC}$+$\frac{1}{2}$$\overrightarrow{AB}$)
=$\frac{3}{10}$$\overrightarrow{AB}•\overrightarrow{AC}$+$\frac{1}{5}$|$\overrightarrow{AC}$|2+$\frac{1}{10}$|$\overrightarrow{AB}$|2
=$\frac{3}{10}×3×2×\frac{1}{2}$+$\frac{1}{5}×4$+$\frac{1}{10}×9$
=$\frac{13}{5}$.
故答案为:$\frac{13}{5}$.

点评 本题以三角形为载体,考查向量的数量积运算,考查了数形结合思想和转化思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知A为椭圆x2+2y2=4的长轴左端点,以A为直角顶点做一个内接于椭圆的等腰直角三角形ABC,则斜边BC的长为(  )
A.$\frac{4}{3}$B.$\frac{8}{3}$C.$\frac{12}{3}$D.$\frac{16}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在下列函数中,在区间(0,$\frac{π}{2}}$)上为增函数且以π为正周期的是(  )
A.y=sin$\frac{x}{2}$B.y=sin2xC.y=-cos2xD.y=-tanx

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知△ABC中,AB=AC,D为△ABC外接圆劣弧$\widehat{AC}$上的点(不与点A、C重合),延长AD交BC的延长线于F.
(Ⅰ)求证:∠CDF=∠ADB;
(Ⅱ)求证:AB•AC•DF=AD•FC•FB.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知定义在(-1,1)上的奇函数f (x),其导函数为f′(x)=l+cosx,如果f(1-a)+f(l-a2)<0,则实数a的取值范围为(  )
A.(0,1)B.(1,$\sqrt{2}$)C.(-2,-$\sqrt{2}$)D.(1,$\sqrt{2}$)∪(-$\sqrt{2}$,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知f(x+1)为偶函数,且f(x)在区间(1,+∞)上单调递减.若a=f(2),b=f(log43),c=f($\frac{1}{2}$),则有(  )
A.a<b<cB.b<c<aC.c<b<aD.a<c<b

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知数列{an}中,a1=3,an=an-1+3,则a10=30.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若m是2和8的等比中项,且m<0,则圆锥曲线x2+$\frac{{y}^{2}}{m}$=1的离心率是(  )
A.$\frac{\sqrt{3}}{2}$B.$\sqrt{5}$C.$\frac{\sqrt{3}}{2}$ 或  $\frac{\sqrt{5}}{2}$D.$\frac{\sqrt{3}}{2}$或$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图所示,在直三棱柱ABC-A1B1C1中,D点为棱AB的中点.
(1)求证:AC1∥平面B1CD;
(2)若AB=AC=2,BC=BB1=2$\sqrt{2}$,求二面角B1-CD-B的余弦值;
(3)若AC1,BA1,CB1两两垂直,求证:此三棱柱为正三棱柱.

查看答案和解析>>

同步练习册答案