精英家教网 > 高中数学 > 题目详情
10.M在不等式组$\left\{\begin{array}{l}{x-2≤0}\\{3x+4y≥4}\\{y-3≤0}\end{array}\right.$所表示的平面区域上,点N在曲线x2+y2+4x+3=0上,那么|MN|的最小值是(  )
A.$\frac{1}{2}$B.1C.$\frac{2\sqrt{10}}{3}$-1D.$\frac{2\sqrt{10}}{3}$

分析 作出不等式组对应的平面区域,利用配方法求出圆的标准方程,利用数形结合进行求解即可.

解答 解:由x2+y2+4x+3=0得(x+2)2+y2=1,则圆心为D(-2,0),半径R=1,
作出不等式组对应的平面区域如图:
由图象知,当NM垂直直线3x+4y=4时,D到区域内的距离最小,此时MN最小,
DM=$\frac{|-6+0-4|}{\sqrt{{3}^{2}+{4}^{2}}}$=$\frac{10}{5}$=2,
则MN的最小值为MN=DM-R=2-1=1,
故选:B.

点评 本题主要考查线性规划的应用,利用数形结合是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.已知函数f(x)=x3-px2-qx图象与x轴切于点(1,0),则f(x)极大值与极小值的和=$\frac{4}{27}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知a,b>0,且a≠1,b≠1,若logab>1,则(  )
A.(a-1)(b-1)<0B.(a-1)(b-a)>0C.(b-1)(b-a)<0D.(a-1)(a-b)>0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.(2x-1)10=a0+a1x+a2x2+…+a9x9+a10x10,则a2+a3+…+a9+a10=20.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)是定义在R上的奇函数,且在区间[0,+∞)上为减函数,若f(1-a)+f(1-2a)<0求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.一个三棱锥的三视图如图所示,则该三棱锥的外接球的表面积为(  )
A.25πB.$\frac{29π}{4}$C.29πD.116π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知向量$\overrightarrow m=(\sqrt{3}cos\frac{x}{2},1)$,$\overrightarrow n=(sin\frac{x}{2},-{cos^2}\frac{x}{2})$,设函数$f(x)=\frac{1}{2}+\overrightarrow m•\overrightarrow n$.又在△ABC中,角A、B、C的对边分别是a,b,c,$f(A)=\frac{1}{2}$.
(1)求角A的大小;
(2)若a=3,且cos(B-C)+cosA=4sin2C.求c边的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列说法中,不正确的是(  )
A.命题“若x2-3x+2=0,则x=1”的逆否命题为:“若x≠1,则x2-3x+2≠0”
B.命题“?x0∈R,${x}_{0}^{2}$-x0>0”的否定是:“?x∈R,x2-x≤0”
C.命题“p或q”为真命题,则命题p和命题q均为真命题
D.“x>3”是“x>2”的充分不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:
单价x(元)88.28.48.68.89
销量y(件)908483807568
求回归直线方程$\stackrel{∧}{y}$=bx+a,其中b=-20,a=$\overline y$-b$\overline{x}$.

查看答案和解析>>

同步练习册答案