精英家教网 > 高中数学 > 题目详情
17.水平放置的正方体的六个面分别用“前面,后面,上面,下面,左面,右面”表示,如图是正方体的表面展开图,若图中“成”表示正方体的前面,“功”表示正方体的右面,“你”表示正方体的下面,则“孝”“高”“助”分别表示正方体的(  )
A.左面,后面,上面B.后面,上面,左面C.上面,左面,后面D.后面,左面,上面

分析 画出正方体的直观图,使得图中“成”表示正方体的前面,“功”表示正方体的右面,“你”表示正方体的下面,推出结果.

解答 解:由题意可知正方体的直观图如图:
则“孝”“高”“助”分别表示正方体的:后面,上面,左面.
故选:B.

点评 本题考查几何体的表面展开图的应用,考查空间想象能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知复数(2k2-3k-2)+(k2-k)i在复平面内对应的点在第二象限.求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知不等式|x-2|>3的解集与关于x的不等式x2-ax-b>0的解集相同.
(1)求实数a,b的值;
(2)求函数f(x)=a$\sqrt{x-3}$+b$\sqrt{44-x}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在四棱锥P-ABCD中,AB∥CD,AB⊥AD,AB=2,AD=$\sqrt{2}$,CD=1,PA⊥平面ABCD,PA=2.
(Ⅰ)设平面PAB∩平面PCD=m,求证:CD∥m;
(Ⅱ)设点Q为线段PB上一点,且直线QC与平面PAC所成角的正切值为$\frac{\sqrt{2}}{2}$,求$\frac{PQ}{PB}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f (x)=$\left\{\begin{array}{l}{e}^x-k,x≤0\\(1-k)x+k,x>0\end{array}$  是R上的增函数,则实数k的取值范围是(  )
A.( $\frac{1}{3}$,$\frac{2}{3}$ )B.[$\frac{1}{3}$,$\frac{2}{3}$ )C.( $\frac{1}{2}$,$\frac{2}{3}$ )D.[$\frac{1}{2}$,1 )

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)=$\left\{\begin{array}{l}{1-\sqrt{x},x≥0}\\{{2}^{x},x<0}\end{array}\right.$,则f(f(4))=$\frac{1}{2}$,f(x)的最大值是1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.下列说法及计算不正确的命题序号是④
①6名学生争夺3项冠军,冠军的获得情况共有36种;
②某校开设A类选修课3门,B类选修课4门,一位同学从中共选3门,若要求两类课程中各至少一门,则不同的选法共有60种;
③对于任意实数x,有f(-x)=-f(x),g(-x)=g(x),且x>0,f′(x)<0,g′(x)<0,则x<0,f′(x)>0,g′(x)<0;
④${∫}_{a}^{b}$f(x)dx=${∫}_{a}^{c}$f(x)dx+${∫}_{c}^{b}$f(x)dx(a<c<b).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设函数f(x)=(x+a)lnx,g(x)=$\frac{{x}^{2}}{{e}^{x}}$.已知曲线y=f(x) 在点(1,f(1))处的切线与直线x+2y-1=0垂直.
(Ⅰ)求a的值;
(Ⅱ)设函数m(x)=min{f(x),g(x)}(min{p,q}表示,p,q中的较小值),求函数m(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知f(x)=x|x-a|-2,当x∈(0,2]时恒有f(x)<0,则实数a的取值范围是1<a<3.

查看答案和解析>>

同步练习册答案