精英家教网 > 高中数学 > 题目详情

如图,已知平面是正三角形,且.

(1)设是线段的中点,求证:∥平面
(2)求直线与平面所成角的余弦值.

(1)证明线面平行,则可以利用线面平行的判定定理来得到,属于基础题。 (2)

解析试题分析:(I)证明:取CE中点N,连接MN,BN

则MN∥DE∥AB且MN=DE=AB
∴四边形ABNM为平行四边形∴AM∥BN            4分
∴AM∥平面BCE           6分
(Ⅱ)解:取AD中点H,连接BH,
是正三角形, ∴CH⊥AD           8分
又∵平面  ∴CH⊥AB   ∴CH⊥平面ABED          10分
∴∠CBH为直线 与平面所成的角           12分
设AB=a,则AC=AD=2a   ,  ∴BH=a   BC=a
cos∠CBH= 
考点:线面平行和线面角的求解
点评:解决的关键是根据线面平行的判定定理以及线面角的定义得到,属于基础题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,平面平面中点,中点.

(Ⅰ)求证:平面
(Ⅱ)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,ABCD是正方形,O是正方形的中心,PO底面ABCD,E是PC的中点。
求证:

(1)PA∥平面BDE
(2)平面PAC平面BDE

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在如图的多面体中,⊥平面,
的中点.

(Ⅰ)求证:平面
(Ⅱ)求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
如图,三棱柱中,
的中点,且

(1)求证:∥平面
(2)求与平面所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图甲,在平面四边形ABCD中,已知,,现将四边形ABCD沿BD折起,使平面ABD平面BDC(如图乙),设点E、F分别为棱AC、AD的中点.

(1)求证:DC平面ABC;
(2)求BF与平面ABC所成角的正弦值;
(3)求二面角B-EF-A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在棱长为2的正方体中,设是棱的中点.

⑴ 求证:
⑵ 求证:平面
⑶ 求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,已知AC ⊥平面CDE, BD ∥AC , 为等边三角形,F为ED边上的中点,且

(Ⅰ)求证:CF∥面ABE;
(Ⅱ)求证:面ABE ⊥平面BDE;
(Ⅲ)求该几何体ABECD的体积。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,底面为直角梯形,且,侧面底面. 若.

(Ⅰ)求证:平面
(Ⅱ)侧棱上是否存在点,使得平面?若存在,指出点 的位置并证明,若不存在,请说明理由;
(Ⅲ)求二面角的余弦值.

查看答案和解析>>

同步练习册答案