精英家教网 > 高中数学 > 题目详情
对于任意的复数z=x+yi(x,y∈R),定义运算P(z)=x2[cos(yπ)+isin(yπ)].
(1)集合A={ω|ω=P(z),|z|≤1,Rez,Imz均为整数},试用列举法写出集合A;
(2)若z=2+yi(y∈R),P(z)为纯虚数,求|z|的最小值;
(3)直线l:y=x-9上是否存在整点(x,y)(坐标x,y均为整数的点),使复数z=x+yi经运算P后,P(z)对应的点也在直线l上?若存在,求出所有的点;若不存在,请说明理由.
(1)
z=x+yi
|z|≤1
?x2+y2≤1

由于x,y∈Z,得
x=±1
y=0
x=0
y=±1
x=0
y=0

∴P(±1)=1,P(±i)=0,P(0)=0,
∴A={0,1}
(2)若z=2+yi(y∈R),则P(z)=4[cos(yπ)+isin(yπ)]
若P(z)为纯虚数,则
cosyπ=0
sinyπ≠0

y=k+
1
2
,k∈Z

|z|=
22+y2
=
(k+
1
2
)
2
+4
,k∈Z

∴当k=0或-1时,|z|min=
17
2

(3)P(z)对应点坐标为(x2cos(yπ),x2sin(yπ))
由题意:
y=x-9
x2sinyπ=x2cosyπ-9
x,y∈Z
得x2sin(xπ-9π)=x2cos(xπ-9π)-9
所以 x2sinxπ=x2cosxπ+9∵x∈Z
∴①当x=2k,k∈Z时,得x2+9=0不成立;
②当x=2k+1,k∈Z时,得x2-9=0∴x=±3成立
此时
x=3
y=-6
或 
x=-3
y=-12
即z=3-6i或z=-3-12i.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对于任意的复数z=x+yi(x,y∈R),定义运算P(z)=x2[cos(yπ)+isin(yπ)].
(1)集合A={ω|ω=P(z),|z|≤1,Rez,Imz均为整数},试用列举法写出集合A;
(2)若z=2+yi(y∈R),P(z)为纯虚数,求|z|的最小值;
(3)直线l:y=x-9上是否存在整点(x,y)(坐标x,y均为整数的点),使复数z=x+yi经运算P后,P(z)对应的点也在直线l上?若存在,求出所有的点;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2000•上海)已知复数z0=1-mi(m>0),z=x+yi和w=x'+y'i,其中x,y,x',y'均为实数,i为虚数单位,且对于任意复数z,有w=
.
z0
.
z
,|w|=2|z|.
(Ⅰ)试求m的值,并分别写出x'和y'用x、y表示的关系式;
(Ⅱ)将(x、y)作为点P的坐标,(x'、y')作为点Q的坐标,上述关系可以看作是坐标平面上点的一个变换:它将平面上的点P变到这一平面上的点Q,当点P在直线y=x+1上移动时,试求点P经该变换后得到的点Q的轨迹方程;
(Ⅲ)是否存在这样的直线:它上面的任一点经上述变换后得到的点仍在该直线上?若存在,试求出所有这些直线;若不存在,则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2000•上海)已知复数z0=1-mi(m>0),z=x+yi和,其中x,y,x',y'均为实数,i为虚数单位,且对于任意复数z,有w=
.
z0
.
z
,|w|=2|z|.
(Ⅰ)试求m的值,并分别写出x'和y'用x、y表示的关系式:
(Ⅱ)将(x、y)用为点P的坐标,(x'、y')作为点Q的坐标,上述关系式可以看作是坐标平面上点的一个变换:它将平面上的点P变到这一平面上的点Q.已知点P经该变换后得到的点Q的坐标为(
3
,2)
,试求点P的坐标;
(Ⅲ)若直线y=kx上的任一点经上述变换后得到的点仍在该直线上,试求k的值.

查看答案和解析>>

科目:高中数学 来源:上海 题型:解答题

已知复数z0=1-mi(m>0),z=x+yi和w=x'+y'i,其中x,y,x',y'均为实数,i为虚数单位,且对于任意复数z,有w=
.
z0
.
z
,|w|=2|z|.
(Ⅰ)试求m的值,并分别写出x'和y'用x、y表示的关系式;
(Ⅱ)将(x、y)作为点P的坐标,(x'、y')作为点Q的坐标,上述关系可以看作是坐标平面上点的一个变换:它将平面上的点P变到这一平面上的点Q,当点P在直线y=x+1上移动时,试求点P经该变换后得到的点Q的轨迹方程;
(Ⅲ)是否存在这样的直线:它上面的任一点经上述变换后得到的点仍在该直线上?若存在,试求出所有这些直线;若不存在,则说明理由.

查看答案和解析>>

同步练习册答案