【题目】如图,在三棱锥
中,顶点
在底面
上的投影
在棱
上,
,
,
,
为
的中点.
![]()
(1)求证:
平面
;
(2)求二面角
的余弦值;
(3)已知点
为
的中点,在棱
上是否存在点
,使得
平面
,若存在,求
的值;若不存在,说明理由.
【答案】(1)见解析(2)
(3)存在,![]()
【解析】
(1)由题知:
平面
,所以平面
平面
,因为
,所以
平面
,所以
.又根据勾股定理得到
,所以
平面
.
(2)首先以
为坐标原点,分别以
,
,
为
轴,
轴,轴的正方向,建立空间直角坐标系,找到相应点的坐标,再分别求出平面
和平面
的法向量,带入公式计算即可.
(3)首先设
,
,根据
平面
,得到
,即可求出
,再计算
即可.
(1)因为顶点
在底面
上的射影
在棱
上,
所以
平面
,
因为
平面
,
所以平面
平面
,
因为
,所以
,
因为平面
平面
,
平面
,所以
平面
,
又
平面
,所以
,
由
,
,
得
,所以
,
因为
且
平面
,
平面
,
平面
,
所以
平面
.
![]()
(2)连接
,
因为
为
的中点,
为
的中点,
,
所以
,
如图,以
为坐标原点,分别以
,
,
为
轴,
轴,轴的正方向,建立空间直角坐标系,
,
,
设
为平面
的一个法向量,
则
.取
,得
,
设平面
的一个法向量
,
则
,取
,则
.
设二面角
的平面角为
,
则
,
所以二面角
的余弦值为
.
(3)设
,
,![]()
因为
平面
,
所以
,
,
所以
,
,
.
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
的左右顶点分别为
,
,点
是椭圆
上异于
、
的任意一点,设直线
,
的斜率分别为
、
,且
,椭圆的焦距长为4.
(1)求椭圆
的标准方程;
(2)过右焦点
的直线
交椭圆
于
、
两点,分别记
,
的面积为
、
,求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】中国古代数学著作《算法统宗》中记载了这样的一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还”,其大意为:有一个人走了378里路,第一天健步行走,从第二天起其因脚痛每天走的路程为前一天的一半,走了6天后到达了目的地,问此人第三天走的路程里数为( )
A.192B.48C.24D.88
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校需从甲、乙两名学生中选一人参加物理竞赛,这两名学生最近5次的物理竞赛模拟成绩如下表:
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | |
学生甲的成绩(分) | 80 | 85 | 71 | 92 | 87 |
学生乙的成绩(分) | 90 | 76 | 75 | 92 | 82 |
(1)根据成绩的稳定性,现从甲、乙两名学生中选出一人参加物理竞赛,你认为选谁比较合适?
(2)若物理竞赛分为初赛和复赛,在初赛中有如下两种答题方案:方案1:每人从5道备选题中任意抽出1道,若答对,则可参加复赛,否则被淘汰;方案2:每人从5道备选题中任意抽出3道,若至少答对其中2道,则可参加复赛,否则被淘汰.若学生乙只会5道备选题中的3道,则学生乙选择哪种答题方案进入复赛的可能性更大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,直线
的参数方程为
(
为参数),以坐标原点为极点,
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(1)写出直线
的直角坐标方程;
(2)设点
的坐标为
,若点
是曲线
截直线
所得线段的中点,求
的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一个不透明的盒子中关有蝴蝶、蜜蜂和蜻蜓三种昆虫共11只,现在盒子上开一小孔,每次只能飞出1只昆虫(假设任意1只昆虫等可能地飞出).若有2只昆虫先后任意飞出(不考虑顺序),则飞出的是蝴蝶或蜻蜓的概率是
.
(1)求盒子中蜜蜂有几只;
(2)若从盒子中先后任意飞出3只昆虫(不考虑顺序),记飞出蜜蜂的只数为X,求随机变量X的分布列与数学期望E(X).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2+1,g(x)=4x+1,的定义域都是集合A,函数f(x)和g(x)的值域分别为S和T,
(1)若A=[1,2],求S∩T
(2)若A=[0,m]且S=T,求实数m的值
(3)若对于集合A的任意一个数x的值都有f(x)=g(x),求集合A.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】计划在某水库建一座至多安装3台发电机的水电站,过去50年的水文资料显示,水库年入流量
(年入流量:一年内上游来水与库区降水之和.单位:亿立方米)都在40以上.其中,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年.将年入流量在以上三段的频率作为相应段的概率,并假设各年的年入流量相互独立.
(1)求未来4年中,至多1年的年入流量超过120的概率;
(2)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量
限制,并有如下关系:
年入流量 |
|
|
|
发电量最多可运行台数 | 1 | 2 | 3 |
若某台发电机运行,则该台年利润为5000万元;若某台发电机未运行,则该台年亏损800万元,欲使水电站年总利润的均值达到最大,应安装发电机多少台?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com