精英家教网 > 高中数学 > 题目详情
已知点P是双曲线
x2
a2
-
y2
b2
=1
(a,b>0)右支上一点,F1,F2分别是双曲线的左、右焦点,I为PF1F2的内心,若S△IPF1=S△IPF2+λS△IF1F2成立,则λ的值为(  )
A、
a
c
B、
c
a
C、
b
a
D、
a
b
分析:先由S△IPF1=S△IPF2+λS△IF1F2得|PF1=|PF2|+λ|F1F2|=|PF2|+λ•2c,再由P是右支上的点,得到|PF1|=|PF2|+2a,由此能够求出λ的值.
解答:解:设△PF1F2的内切圆半径为r,由双曲线的定义得|PF1|-|PF2|=2a,|F1F2|=2c,
S△IPF1=
1
2
|PF1|•r,S△IPF1=
1
2
|PF2|•r,S△I F1F2=
1
2
•2c•r=c
由题意得
1
2
|PF1|•r=
1
2
|PF2|•r+λcr,故 λ=|PF1|-|PF2|2c=
a
c

故选 A.
点评:本题考查双曲线的性质和应用,解题时要认真审题,注意公式的灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点F是双曲线x2-
y2
2
=1
的一个焦点,过点F作直线l交双曲线于两点P、Q,若|PQ|=4,则这样的直线l有且仅有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P是双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)和圆x2+y2=a2+b2
的一个交点,F1,F2是该双曲线的两个焦点,∠PF2F1=2∠PF1F2,则该双曲线的离心率为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•扬州三模)已知点P是双曲线x2-y2=2上的点,该点关于实轴的对称点为Q,则
OP
OQ
=
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P在双曲线x2-y2=1的右支上,且点P到直线y=x的距离为,则点P的坐标是_________________.

查看答案和解析>>

科目:高中数学 来源:2011年江苏省扬州市高考数学三模试卷(解析版) 题型:解答题

已知点P是双曲线x2-y2=2上的点,该点关于实轴的对称点为Q,则=   

查看答案和解析>>

同步练习册答案